Friday, October 26, 2007

Different takes on the social brain.

Gobbini et al. show that different types of mentalizing engage different brain regions. The abstract and a summary figure:
We compared two tasks that are widely used in research on mentalizing—false belief stories and animations of rigid geometric shapes that depict social interactions—to investigate whether the neural systems that mediate the representation of others' mental states are consistent across these tasks. Whereas false belief stories activated primarily the anterior paracingulate cortex (APC), the posterior cingulate cortex/precuneus (PCC/PC), and the temporo-parietal junction (TPJ)—components of the distributed neural system for theory of mind (ToM)—the social animations activated an extensive region along nearly the full extent of the superior temporal sulcus, including a locus in the posterior superior temporal sulcus (pSTS), as well as the frontal operculum and inferior parietal lobule (IPL)—components of the distributed neural system for action understanding—and the fusiform gyrus. These results suggest that the representation of covert mental states that may predict behavior and the representation of intentions that are implied by perceived actions involve distinct neural systems. These results show that the TPJ and the pSTS play dissociable roles in mentalizing and are parts of different distributed neural systems. Because the social animations do not depict articulated body movements, these results also highlight that the perception of the kinematics of actions is not necessary to activate the mirror neuron system, suggesting that this system plays a general role in the representation of intentions and goals of actions. Furthermore, these results suggest that the fusiform gyrus plays a general role in the representation of visual stimuli that signify agency, independent of visual form.

Figure - Locations of loci of activations associated with ToM, social animation, and biological motion tasks, projected onto the left and right lateral surfaces of the brain.

No comments:

Post a Comment