Showing posts with label selves. Show all posts
Showing posts with label selves. Show all posts

Friday, November 29, 2024

MindBlog's Brain Hacks

Introspective awareness and modulation of both ancient and more recently evolved aspects of our cognition:

Brain Hack #1
-The reptilian brain (whose modern descendant is found in the mammalian hypothalamus) generates affective states along axes of arousal and valence, whose states in higher primates can be assessed by introspective awareness.

Brain Hack #2
-The early mammalian emotional brain, whose ability to model a self (correlating with the appearance of the agranular prefrontal cortex), develops the ability to distinguish the difference between being (immersed in) an affective state and seeing (observing) it.

Brain Hack #3
-The appearance in the primate brain of the further ability to imagine the minds of others (correlating with appearance of the granular prefrontal cortex), permits appropriate assignments of agency, being able to distinguish one’s own experience (and problems) from the experience (and problems) of others.

The introspection that enables this ensemble of brain hacks can be strengthened by practice of three fundamental meditation techniques: focused awareness (in which our brain’s attentional mode predominates), open awareness (engaging our default mode network), and non-dual awareness (during which both are muted).  

*************
The above is an early draft text that I will be editing further (like my “Tokens of Sanity” post which has had at least six revisions since it 9/29/2024 posting).  It is trying to meld together and condense threads from my last public lecture and Max Bennett's recent book "A Brief History of Intelligence."  Feedback and comment welcome.

Monday, August 05, 2024

Psilocybin desynchronizes our brains during ego dissolution

From Siegel et al (open source).:

A single dose of psilocybin, a psychedelic that acutely causes distortions of space–time perception and ego dissolution, produces rapid and persistent therapeutic effects in human clinical trials1,2,3,4. In animal models, psilocybin induces neuroplasticity in cortex and hippocampus5,6,7,8. It remains unclear how human brain network changes relate to subjective and lasting effects of psychedelics. Here we tracked individual-specific brain changes with longitudinal precision functional mapping (roughly 18 magnetic resonance imaging visits per participant). Healthy adults were tracked before, during and for 3 weeks after high-dose psilocybin (25 mg) and methylphenidate (40 mg - a placebo in the form of methylphenidate, (Ritalin)), and brought back for an additional psilocybin dose 6–12 months later. Psilocybin massively disrupted functional connectivity (FC) in cortex and subcortex, acutely causing more than threefold greater change than methylphenidate. These FC changes were driven by brain desynchronization across spatial scales (areal, global), which dissolved network distinctions by reducing correlations within and anticorrelations between networks. Psilocybin-driven FC changes were strongest in the default mode network, which is connected to the anterior hippocampus and is thought to create our sense of space, time and self. Individual differences in FC changes were strongly linked to the subjective psychedelic experience. Performing a perceptual task reduced psilocybin-driven FC changes. Psilocybin caused persistent decrease in FC between the anterior hippocampus and default mode network, lasting for weeks. Persistent reduction of hippocampal-default mode network connectivity may represent a neuroanatomical and mechanistic correlate of the proplasticity and therapeutic effects of psychedelics.