Each of us tends to emphasize one of two main strategies for spacial navigation. Learning the relationships between environmental landmarks using a "spatial memory strategy" to construct a cognitive map depends on the hippocampus. Navigating using a "response strategy", or series of turns at precise decision points (turn left at corner, then turn right at...), involves the caudate nucleus and proceeds without using landmark relationships.
Bohbot et al. have used a virtual maze task to examine 50 young healthy subjects, half reporting the use each strategy. Those using the spatial strategy
...had significantly more gray matter in the hippocampus and less gray matter in the caudate nucleus compared with response learners. Furthermore, the gray matter in the hippocampus was negatively correlated to the gray matter in the caudate nucleus, suggesting a competitive interaction between these two brain areas.
In a second analysis:
.. the gray matter of regions known to be anatomically connected to the hippocampus, such as the amygdala, parahippocampal, perirhinal, entorhinal and orbitofrontal cortices were shown to covary with gray matter in the hippocampus. Because low gray matter in the hippocampus is a risk factor for Alzheimer's disease, these results have important implications for intervention programs that aim at functional recovery in these brain areas. In addition, these data suggest that spatial strategies may provide protective effects against degeneration of the hippocampus that occurs with normal aging.
No comments:
Post a Comment