Friday, February 15, 2008

A non-invasive brain-machine interface?

Waldert et al. show that hand movement direction can be decoded from magneto- (MEG) and electro-(EEG) encephalography recordings. They suggest that this might make it possible to design a non-invasive brain machine interface. Here is their abstract:

Brain activity can be used as a control signal for brain–machine interfaces (BMIs). A powerful and widely acknowledged BMI approach, so far only applied in invasive recording techniques, uses neuronal signals related to limb movements for equivalent, multidimensional control of an external effector. Here, we investigated whether this approach is also applicable for noninvasive recording techniques. To this end, we recorded whole-head MEG during center-out movements with the hand and found significant power modulation of MEG activity between rest and movement in three frequency bands: an increase for ≤7 Hz (low-frequency band) and 62–87 Hz (high-{gamma} band) and a decrease for 10–30 Hz (β band) during movement. Movement directions could be inferred on a single-trial basis from the low-pass filtered MEG activity as well as from power modulations in the low-frequency band, but not from the β and high-{gamma} bands. Using sensors above the motor area, we obtained a surprisingly high decoding accuracy of 67% on average across subjects. Decoding accuracy started to rise significantly above chance level before movement onset. Based on simultaneous MEG and EEG recordings, we show that the inference of movement direction works equally well for both recording techniques. In summary, our results show that neuronal activity associated with different movements of the same effector can be distinguished by means of noninvasive recordings and might, thus, be used to drive a noninvasive BMI.

1 comment:

Sarah said...

Thanks for the great and motivating post! I fully agree with you. Do check out, they have a whole host of interesting and helpful articles.

Post a Comment