Highlights
•Neural markers for risk tolerance were investigated with multimodal imaging data
•Risk tolerance correlated with amygdala-medial prefrontal cortex connectivity
•Risk tolerance correlated with amygdala structureSummary
Risk tolerance, the degree to which an individual is willing to tolerate risk in order to achieve a greater expected return, influences a variety of financial choices and health behaviors. Here we identify intrinsic neural markers for risk tolerance in a large (n = 108) multimodal imaging dataset of healthy young adults, which includes anatomical and resting-state functional MRI and diffusion tensor imaging. Using a data-driven approach, we found that higher risk tolerance was most strongly associated with greater global functional connectivity (node strength) of and greater gray matter volume in bilateral amygdala. Further, risk tolerance was positively associated with functional connectivity between amygdala and medial prefrontal cortex and negatively associated with structural connectivity between these regions. These findings show how the intrinsic functional and structural architecture of the amygdala, and amygdala-medial prefrontal pathways, which have previously been implicated in anxiety, are linked to individual differences in risk tolerance during economic decision making.
No comments:
Post a Comment