Thursday, April 03, 2008

Report from the road...



My first day on the road to Austin, TX. (see April 1 post) ended at Waklulla Springs State Park in the Florida panhandle, staying overnight in the Park Lodge. The second night has been at L'auberge Casino in Lake Charles, Louisiana (the room sans gambling)...heading out for the Cajun Trail along the coast today.

Runner's High - endorphin release finally demonstated

It has long been assumed that strenuous exercise causes chemical changes in the brain, particularly the release of endorphins, the brain’s naturally occurring opiates. The problem with this idea, from Kolata's review, has been:
...that it was not feasible to do a spinal tap before and after someone exercised to look for a flood of endorphins in the brain. Researchers could detect endorphins in people’s blood after a run, but those endorphins were part of the body’s stress response and could not travel from the blood to the brain. They were not responsible for elevating one’s mood. So for more than 30 years, the runner’s high remained an unproved hypothesis.
Boecker et al. used a synthetic opioid labelled with fluorine isotope ([18F]FDPN), visible in positron emission brain scans (PET scans), which binds to brain opioid receptors. Less of this compound was found bound to several brain sites important in mood control after running, because those site had become occupied by endogenous opioids during the running. The current affective states before and after running as well as before the resting PET scan were evaluated with Visual Analog Mood Scales - subjects rated different items (sadness, tension, fear, anger, confusion, fatigue, happiness, and energy. This yielded the VAS euphoria scale referenced in the figure. VAS ratings of euphoria are inversely correlated with [18F]FDPN binding. Here is that figure, followed by the full abstract from the article.

Figure - Correlation of opioidergic binding in runners with VAS ratings of euphoria. Statistical parametric maps of the regression analysis (regions where VAS ratings of euphoria are inversely correlated with [18F]FDPN binding) in standard stereotactic space (Montreal Neurological Institute [MNI] space) are overlaid in color on axial slices of a skull-stripped normalized brain.
The abstract:
The runner's high describes a euphoric state resulting from long-distance running. The cerebral neurochemical correlates of exercise-induced mood changes have been barely investigated so far. We aimed to unravel the opioidergic mechanisms of the runner's high in the human brain and to identify the relationship to perceived euphoria. We performed a positron emission tomography "ligand activation" study with the nonselective opioidergic ligand 6-O-(2-[18F]fluoroethyl)-6-O-desmethyldiprenorphine ([18F]FDPN). Ten athletes were scanned at 2 separate occasions in random order, at rest and after 2 h of endurance running (21.5 ± 4.7 km). Binding kinetics of [18F]FDPN were quantified by basis pursuit denoising (DEPICT software). Statistical parametric mapping (SPM2) was used for voxelwise analyses to determine relative changes in ligand binding after running and correlations of opioid binding with euphoria ratings. Reductions in opioid receptor availability were identified preferentially in prefrontal and limbic/paralimbic brain structures. The level of euphoria was significantly increased after running and was inversely correlated with opioid binding in prefrontal/orbitofrontal cortices, the anterior cingulate cortex, bilateral insula, parainsular cortex, and temporoparietal regions. These findings support the "opioid theory" of the runner's high and suggest region-specific effects in frontolimbic brain areas that are involved in the processing of affective states and mood.



Infants to adults, color perception switches from right to left hemisphere

An interesting article by Franklin et al. shows that our perception of color categories (CP) starts in the right hemisphere, but then switches to the left hemisphere as it develops the lexical color codes of language. They suggest that language-driven CP in adults may not build on prelinguistic CP, but that language instead imposes its categories on a left hemisphere that is not categorically prepartitioned.

Wednesday, April 02, 2008

The 'size' of an odor can influence our reaching to grasp an object.

An nice example from Tubaldi et al. of multisensory integration. They find that olfactory information contains highly detailed information able to elicit the planning for a reach-to-grasp movement suited to interact with the evoked object. From their paper:
The size of the object evoked by the odour has the potential to modulate hand shaping. Importantly, the fact that ‘size’ olfactory information modulates the hand at the level of individual digits (and not only the thumb-index distance as previously reported) leads to two important considerations in terms of sensorimotor transformation. First, from a perceptual perspective, the representation evoked by the odour seems to contain highly detailed information about the object (i.e., volumetric features rather than a linear dimension such as the thumb-index distance). If olfaction had provided a blurred and holistic object's representation (i.e., a low spatial-resolution of the object's image), then the odour would have not affected the hand in its entirety. Second, from a motor perspective, the olfactory representation seems to be mapped into the action vocabulary with a certain degree of reliability. The elicited motor plan embodies specific and selective commands for handling the ‘smelled’ object, and it is fully manageable by the motor system. Therefore, it is not an incomplete primal sketch which only provides a preliminary descriptive in the terms of motor execution.
Some of the details:
When the odour was ‘large’ and the visual target was small, only one finger joint (i.e., the mcp joint of the ring finger) was affected by the olfactory stimulus. In contrast, the influence of the ‘small’ odour on the kinematics of a reach-to-grasp movement towards a large target was much more evident and a greater number of joints were mobilized. This seems to suggest that planning for a reach-to-grasp movement on the basis of a ‘small’ odour when the target is large poses more constraints than when the odour is ‘large’ and the movement is directed towards a small target. Our proposal is that the motor plan elicited by the odour has to be modified according to the visual target. However such reorganization could be more easily managed without compromising object grasp when the odour is ‘large’ and the visual target is small than vice versa.

When a preceding odour elicits a motor plan which is congruent with the motor plan subsequently established for the visual target, the kinematic patterning is magnified. Therefore, the grasp plan triggered by the olfactory stimulus primed the grasp plan established for the visual target. This effect was evident at the very beginning of the movement, fading away during the second phase of the movement. For both the incongruent conditions the conflict between the ‘olfactory’ and the ‘visual’ grasp plans lasted for the entire movement duration. Importantly, and again in contrast with what reported for the incongruent conditions, an odour of a similar ‘size’ than the visual target, does not alter hand synergies with respect to when no-odour is presented. This indicates that when the ‘size’ of the odour and the size of the visual target match, the integration of the two modalities reinforces the grasp plan, the established synergic pattern is more ‘protected’ and it does not change. Having two sources carrying similar information leads to a more stable and coherent action.

Antidepressant effects of eating less.

I notice that when I get paranoid about my weight creeping up and suddenly eat less for several days, my general mood improves considerably.... I wonder if the chemistry described in these (admittedly more extreme) experiments on rodents done by Lutter et al. is what is going on. The experiments deal with the orexin neuropeptides, which can stimulate food seeking activity in mice and decrease anxiety-like behaviors in helplessness and social defeat model of stress. (Decreased levels of orexin-A have been reported in the CSF of suicidal patients with major depressive disorder, supporting chronic social defeat stress as a model of major depression.) The title of the article is "Orexin Signaling Mediates the Antidepressant-Like Effect of Calorie Restriction" Here is the abstract:
During periods of reduced food availability, animals must respond with behavioral adaptations that promote survival. Despite the fact that many psychiatric syndromes include disordered eating patterns as a component of the illness, little is known about the neurobiology underlying behavioral changes induced by short-term calorie restriction. Presently, we demonstrate that 10 d of calorie restriction, corresponding to a 20–25% weight loss, causes a marked antidepressant-like response in two rodent models of depression and that this response is dependent on the hypothalamic neuropeptide orexin (hypocretin). Wild-type mice, but not mice lacking orexin, show longer latency to immobility and less total immobility in the forced swim test after calorie restriction. In the social defeat model of chronic stress, calorie restriction reverses the behavioral deficits seen in wild-type mice but not in orexin knock-out mice. Additionally, chronic social defeat stress induces a prolonged reduction in the expression of prepro-orexin mRNA via epigenetic modification of the orexin gene promoter, whereas calorie restriction enhances the activation of orexin cells after social defeat. Together, these data indicate that orexin plays an essential role in mediating reduced depression-like symptoms induced by calorie restriction.

Tuesday, April 01, 2008

MindBlog hits the road....

I'm loading boxes into my Honda Civic, leaving my condo in paradise (Fort Lauderdale) to return to Madison, Wisconsin via Austin, Texas - where I visit my son and his wife who live in the family house in which I grew up. It is a week or two early to return to Wisconsin, but I've decided I should symbolically share the suffering by arriving for the last gasp of a winter that has deposited 107 inches of snow on my Twin Valley home.

I've decided to take a leisurely tourist drive, tonight staying in the Wakula Springs State Park in the Florida panhandle, at the Wakula Springs Lodge, an example of Mediterranean Revival architecture built in 1937 by Edward Ball, who established the Wakula Springs wildlife preserve in 1934. After driving along Florida's Gulf coast Wednesday I'm heading on to Lake Charles, Louisiana, and crashing at the L'Augerge Du Lac casino. Thursday morning I will take the "Creole Trail" along the Louisiana Gulf coast into Texas, and then head on to Austin. I'm not sure what my internet status will be. I have asked a friend to post some blog drafts I've prepared ahead. It would be therapeutic for me to be off the grid for a few days.......

Mind Reading with fMRI

From the Nature Editor's summary:
Recent functional magnetic resonance imaging (fMRI) studies have shown that, based on patterns of activity evoked by different categories of visual images, it is possible to deduce simple features in the visual scene, or to which category it belongs. Kay et al. take this approach a tantalizing step further. Their newly developed decoding method, based on quantitative receptive field models that characterize the relationship between visual stimuli and fMRI activity in early visual areas, can identify with high accuracy which specific natural image an observer saw, even for an image chosen at random from 1,000 distinct images. This prompts the thought that it may soon be possible to decode subjective perceptual experiences such as visual imagery and dreams, an idea previously restricted to the realm of science fiction.
The abstract from Kay et al., followed by one figure:
A challenging goal in neuroscience is to be able to read out, or decode, mental content from brain activity. Recent functional magnetic resonance imaging (fMRI) studies have decoded orientation, position, and object category from activity in visual cortex. However, these studies typically used relatively simple stimuli (for example, gratings) or images drawn from fixed categories (for example, faces, houses), and decoding was based on previous measurements of brain activity evoked by those same stimuli or categories. To overcome these limitations, here we develop a decoding method based on quantitative receptive-field models that characterize the relationship between visual stimuli and fMRI activity in early visual areas. These models describe the tuning of individual voxels for space, orientation and spatial frequency, and are estimated directly from responses evoked by natural images. We show that these receptive-field models make it possible to identify, from a large set of completely novel natural images, which specific image was seen by an observer. Identification is not a mere consequence of the retinotopic organization of visual areas; simpler receptive-field models that describe only spatial tuning yield much poorer identification performance. Our results suggest that it may soon be possible to reconstruct a picture of a person's visual experience from measurements of brain activity alone.


Figure Legend - The experiment consisted of two stages. In the first stage, model estimation, fMRI data were recorded while each subject viewed a large collection of natural images. These data were used to estimate a quantitative receptive-field model for each voxel. In the second stage, image identification, fMRI data were recorded while each subject viewed a collection of novel natural images. For each measurement of brain activity, we attempted to identify which specific image had been seen. This was accomplished by using the estimated receptive-field models to predict brain activity for a set of potential images and then selecting the image whose predicted activity most closely matches the measured activity.

Monday, March 31, 2008

Regulating the brain circuits of compassion

Here is yet more compelling evidence that you are what you spend your time imagining. In a recent study in PLoS ONE, Lutz, Davidson and colleagues extend their previous work on correlations between brain states and meditation to show that one particular kind of Buddhist meditation, which emphasizes empathetic and loving thoughts towards others and self, changes the brain's reactivity to emotional sounds. In experienced practitioners of the 'loving-kindness-compassion' meditation technique, such images caused larger reactions in the insular and anterior cingulate cortices than were observed in novices. Here is their abstract and one figure from the paper.
Recent brain imaging studies using functional magnetic resonance imaging (fMRI) have implicated insula and anterior cingulate cortices in the empathic response to another's pain. However, virtually nothing is known about the impact of the voluntary generation of compassion on this network. To investigate these questions we assessed brain activity using fMRI while novice and expert meditation practitioners generated a loving-kindness-compassion meditation state. To probe affective reactivity, we presented emotional and neutral sounds during the meditation and comparison periods. Our main hypothesis was that the concern for others cultivated during this form of meditation enhances affective processing, in particular in response to sounds of distress, and that this response to emotional sounds is modulated by the degree of meditation training. The presentation of the emotional sounds was associated with increased pupil diameter and activation of limbic regions (insula and cingulate cortices) during meditation (versus rest). During meditation, activation in insula was greater during presentation of negative sounds than positive or neutral sounds in expert than it was in novice meditators. The strength of activation in insula was also associated with self-reported intensity of the meditation for both groups. These results support the role of the limbic circuitry in emotion sharing. The comparison between meditation vs. rest states between experts and novices also showed increased activation in amygdala, right temporo-parietal junction (TPJ), and right posterior superior temporal sulcus (pSTS) in response to all sounds, suggesting, greater detection of the emotional sounds, and enhanced mentation in response to emotional human vocalizations for experts than novices during meditation. Together these data indicate that the mental expertise to cultivate positive emotion alters the activation of circuitries previously linked to empathy and theory of mind in response to emotional stimuli.


(AI) and (Ins.) stand for anterior insula and insula, respectively (z = 12 and z = 19, 15 experts and 15 novices, color codes: orange, p less than 5.10ˆ-2, yellow, p less than 2.10ˆ-2). B, C. Impulse response from rest to compassion in response to emotional sounds in AI (B) and Ins. (C). D–E. Responses in AI (D) and Ins. (E) during poor and good blocks of compassion, as verbally reported, for 12 experts (red) and 10 novices (blue).

Friday, March 28, 2008

Rodent trained to be Las Vegas croupier

Atshushi Iriki's group in Tokyo has trained degus (intelligent rodents native to the highlands of Chile) to provide the first example (published in PLOS ONE) of rodents wielding tools for a task. (see my 5/7/2007 post for an example with Ravens. Monkeys and Chimps also use tools - Hihara et al. have found extension of corticocortical afferents into the anterior bank of the intraparietal sulcus after tool-use training in adult monkeys.) It will be interesting to see whether tool-use training in degus also results in extended representations in parietotemporal areas and newly formed connections between brain areas, including the prefrontal cortex, similar to those observed in the macaque brain. Work of this sort begins to define brain structures used in the development of tool use.

The mind's eye in number space

From Loetscher et al., an interesting bit on how our subtle muscle movements correlate with counting operations - numbers and space:
Human subjects' answer to questions like “what number is halfway between 2 and 8” provides insights into spatial attention mechanisms involved in numerical processing. Here we show that mental numerical bisections are accompanied by a systematic pattern of horizontal eye movements: processing of a large number followed by a small number is accompanied with leftward eye movements, a tendency less pronounced or even reversed for the processing of a small number followed by a large number. The eyes thus appear to move along a left-to-right-oriented number line, indicating that shifts of attention in representational space are accompanied by an ocular motor orienting response. These results add to the growing evidence for a convergence of numerical processing, spatial attention, and movement planning in the parietal and frontal lobes. They also demonstrate the homologous relationship between our internal representations of numbers and space, and show that the concept of “number space” is more than a mere metaphor.

Thursday, March 27, 2008

A hierarchy of temporal receptive windows in our brains

Here is the abstract from a fascinating study by Hasson et al. on how our visual system assembles time narratives - as during watching a movie - followed by part of one of the figures from the paper:
Real-world events unfold at different time scales and, therefore, cognitive and neuronal processes must likewise occur at different time scales. We present a novel procedure that identifies brain regions responsive to sensory information accumulated over different time scales. We measured functional magnetic resonance imaging activity while observers viewed silent films presented forward, backward, or piecewise-scrambled in time. Early visual areas (e.g., primary visual cortex and the motion-sensitive area MT+) exhibited high response reliability regardless of disruptions in temporal structure. In contrast, the reliability of responses in several higher brain areas, including the superior temporal sulcus (STS), precuneus, posterior lateral sulcus (LS), temporal parietal junction (TPJ), and frontal eye field (FEF), was affected by information accumulated over longer time scales. These regions showed highly reproducible responses for repeated forward, but not for backward or piecewise-scrambled presentations. Moreover, these regions exhibited marked differences in temporal characteristics, with LS, TPJ, and FEF responses depending on information accumulated over longer durations (~36 s) than STS and precuneus (~12 s). We conclude that, similar to the known cortical hierarchy of spatial receptive fields, there is a hierarchy of progressively longer temporal receptive windows in the human brain.


Figure- Maps are shown on inflated (top) and unfolded (bottom) left and right hemispheres. White outlines mark the main regions in which responses were not time reversible. Anatomical abbreviations: ITS, inferior temporal sulcus; LS, lateral sulcus; STS, superior temporal sulcus; TPJ, temporal parietal junction; CS, central sulcus; IPS, intraparietal sulcus. Several higher-order visual areas were functionally defined based on their responses to faces (red outlines), objects (blue outlines), and houses (green outlines). Functionally and anatomically defined cortical areas: V1, primary visual cortex; MT+, MT complex responsive to visual motion; PPA, parahippocampal place area; FFA, fusiform face area; LO, lateral occipital complex responsive to pictures of objects; STS-face, area in superior temporal sulcus responsive to faces.

Wednesday, March 26, 2008

Anxiety: fear in seach of a cause

The title of this post is a pithy definition that Patricia Pearson gives in her recent book, "A BRIEF HISTORY OF ANXIETY... Yours and Mine", reviewed by William Grimes in the NY Times. From that review some clips:
Everywhere and nowhere, anxiety... In many cases it is the fear of fear itself, a free-floating, nebulous entity that, like a mutant virus, feeds on any available host. Reason is powerless against it. Ms. Pearson argues, in fact, that rationalism, intended to banish superstition and fear, has instead removed one of the most effective weapons against anxiety, namely religious faith and ritual.

...the worship of reason and science, by encouraging the notion that human beings can control their environment, has created a terrible fault line in the modern psyche, although not all societies suffer equally. Mexicans have lots to worry about but don’t. The World Mental Health Survey, conducted in 2002, found that only 6.6 percent of Mexicans had ever experienced a major episode of anxiety or depression. Meanwhile, to their north, 28.8 percent of the American population has been afflicted with anxiety, the highest level in the world. Mexicans who move to the United States adapt, becoming more anxious.

Depressing news: antidepressants don't work?

In the April issue of Nature Reviews Neuroscience, Claudia Wiedemann reviews reactions to a meta analysis by Kirsch et al. of data on antidepressant drugs submitted to the Food and Drug Administration that resulted in the licensing of four of the most commonly prescribed antidepressants: the selective serotonin reuptake inhibitors (SSRIs) Prozac, Seroxat, Effexor and Serzone. For anything but the most severe depression, there was no difference between the drugs and placebos. Kirsch suggests that there is little reason to prescribe anti-depressant medication to any but the most severely depressed patients. The conclusion of the study:
Drug–placebo differences in antidepressant efficacy increase as a function of baseline severity, but are relatively small even for severely depressed patients. The relationship between initial severity and antidepressant efficacy is attributable to decreased responsiveness to placebo among very severely depressed patients, rather than to increased responsiveness to medication.

Tuesday, March 25, 2008

Differing perception of facial expressions in the East and West

Nagourney describes a study in the March issue of The Journal of Personality and Social Psychology reinforcing previous work showing that Westerners are more likely to see emotions as individual feelings while East Asians see them as inseparable from the feelings of the group. Many researchers have suggested that East Asians take a more holistic view of the world. Here is the abstract of the Masuda et al. article:
Two studies tested the hypothesis that in judging people's emotions from their facial expressions, Japanese, more than Westerners, incorporate information from the social context. In Study 1, participants viewed cartoons depicting a happy, sad, angry, or neutral person surrounded by other people expressing the same emotion as the central person or a different one. The surrounding people's emotions influenced Japanese but not Westerners' perceptions of the central person. These differences reflect differences in attention, as indicated by eye-tracking data (Study 2): Japanese looked at the surrounding people more than did Westerners. Previous findings on East-West differences in contextual sensitivity generalize to social contexts, suggesting that Westerners see emotions as individual feelings, whereas Japanese see them as inseparable from the feelings of the group.

Heritability of cooperative behavior

A study of the behaviors of monozygotic versis dizygotic twins (i.e. 'identical' vs. 'non-identical' twins) in a classical cooperation game yields evidence for genetic influences on yet another of our behaviors - how trusting we are:
Although laboratory experiments document cooperative behavior in humans, little is known about the extent to which individual differences in cooperativeness result from genetic and environmental variation. In this article, we report the results of two independently conceived and executed studies of monozygotic and dizygotic twins, one in Sweden and one in the United States. The results from these studies suggest that humans are endowed with genetic variation that influences the decision to invest, and to reciprocate investment, in the classic trust game. Based on these findings, we urge social scientists to take seriously the idea that differences in peer and parental socialization are not the only forces that influence variation in cooperative behavior.

Our results are complementary to work on the neurological and hormonal substrates of behavior in the trust game and other similar social dilemma games...Enhanced oxytocin levels have been documented in subjects who received a monetary transfer that reflected an intention of trust, and later work has demonstrated that exogenously administered oxytocin increases trust. Scholars have also documented associations between cortisol and trust. These hormonal studies, therefore, indicate that further study of polymorphisms of CYP11B1, OXTR, and other genes involved in the expression and regulation of these hormones may explain part of the genetic effect on cooperation. In fact, one research team has already identified a polymorphism in the AVPR1a gene that is associated with related behavior in the dictator game.

Monday, March 24, 2008

Neuroimaging shows use of self thoughts to infer others' mental states

Jenkins et al. offer a fascinating study of how we infer the mental states of others (mentalize), making use of a phenomenon (repetition suppression) that I had not been aware of before. Here I've done a cut/paste/edit from the abstract and article to try to outline the basic idea, and also show the central figure:
One useful strategy for inferring others' mental states (i.e., mentalizing) may be to use one's own thoughts, feelings, and desires as a proxy for those of other people (This approach to social cognition is alternately described as "simulationist," "projectionist," or "self-referential".) A dorsal aspect of the medial prefrontal cortex has been associated with mentalizing about people perceived to be dissimilar from oneself, whereas a more ventral aspect of medial prefrontal cortex (vMPFC) has been linked to mentalizing about those perceived to be similar. Critically, this vMPFC region also has been observed repeatedly during tasks that require participants to introspect about their own mental experiences, suggesting a connection between tasks that require self-referential thought and those that require inferences about the mental states of similar others.

Because such techniques integrate neural activity across hundreds of thousands of neurons, activation of the same brain voxel by different tasks might occur because each activates distinct, but neighboring or interdigitated, neuronal populations. In this way, two tasks could possibly coactivate the same brain voxel despite engaging different sets of neurons that subserve disparate cognitive processes.

This technical limit can now be circumvented by recently developed paradigms that support stronger conclusions regarding the coactivation of the same neurons by different stimuli or different tasks. These techniques rely on an effect known as "repetition suppression," the observation that neural activity in stimulus-sensitive brain regions is typically reduced when a stimulus is repeated

Suppression across two stimuli indicates that the same (or at least a largely overlapping) population of neurons is engaged by both stimuli. For example, a demonstration of repetition suppression for the number "3" when it follows "4" but not when it follows "40" might suggest that a relatively high proportion of the neurons that code for the number "3" also participate in representations of similar numerosities (such as "4"), but not in representations of more distant numerosities.

If (i) repeatedly considering one's own mental states produces repetition suppression in self-sensitive regions such as vMPFC, and (ii) one engages in self-referential processing when considering the minds of similar others, then (iii) repetition suppression also should be observed when perceivers first mentalize about a similar other and then introspect about self.

Consistent with this hypothesis this perceivers spontaneously engage in self-referential processing when mentalizing about particular individuals, vMPFC response was suppressed when self-reflections followed either an initial reflection about self or a judgment of a similar, but not a dissimilar, other. These results suggest that thinking about the mind of another person may rely importantly on reference to one's own mental characteristics.

Here is the basic figure:

Figure legend (click on figure to enlarge it). A region of vMPFC (–6, 45, 3; 47 voxels in extent) was defined from an explicit self-reference task in which judgments of one's own personality characteristics were compared with judgments of another person (i.e., self > other). On a separate task, participants completed a series of paired judgments, in which they introspected about their own preferences and opinions immediately after one of three types of judgments: (i) an initial report about self (self-after-self), (ii) a judgment of a person with the same sociopolitical attitudes as oneself (self-after-similar), or (iii) a judgment of a person with opposing attitudes (self-after-dissimilar). On an equal number of trials, participants considered the identical question for prime and self or a different question across the two phases. The bar graph depicts the BOLD response associated with these self-reports after subtracting out the response associated with the initial judgment (see Methods); values therefore represent the additional BOLD response specifically associated with subsequent judgments of self. For comparison purposes, the figure includes the response in this region to self-reports made in isolation (gray bar). Significant repetition suppression was observed for self-reports that followed either an initial self-report (blue bars) or a judgment of a similar other (red bars), but not judgments of a dissimilar other (green bars). Error bars represent the 95% confidence interval for within-subject designs.

Like many of the cognitive heuristics that typically serve us well, but periodically lead to undesirable or maladaptive behavior, the use of self-reference in mentalizing may be a double-edged sword: a useful strategy for providing rich and accurate insights into the minds of similar individuals, but rife with the potential to exclude those minds assumed at first glance to be different from our own.

Emonomics

Berreby offers an entertaining review of Ariely's new book "Predictably Irrational," which deals with behavioral economics - the experimental study of what people actually do when they buy, sell, change jobs, marry and make other real-life decisions. The book is a concise summary of why today’s social science increasingly treats the markets-know-best model as a fairy tale.
To see how arousal alters sexual attitudes, for example, Ariely and his colleagues asked young men to answer a questionnaire — then asked them to answer it again, only this time while indulging in Internet pornography on a laptop wrapped in Saran Wrap. (In that state, their answers to questions about sexual tastes,, violence and condom use were far less respectable.) To study the power of suggestion, Ariely’s team zapped volunteers with a little painful electricity, then offered fake pain pills costing either 10 cents or $2.50 (all reduced the pain, but the more expensive ones had a far greater effect). To see how social situations affect honesty, they created tests that made it easy to cheat, then looked at what happened if they reminded people right before the test of a moral rule. (It turned out that being reminded of any moral code — the Ten Commandments, the non-existent “M.I.T. honor system” — caused cheating to plummet.)

A bit of piano...

I thought I would punctuate the stream of 'serious' posts with a paste from my piano recordings, this being "Three Fantastic Dances" by Shostakovitch:

Most popular consciousness articles for February

From the ASSC downloads archive:
1. Koriat, A. (2006) Metacognition and Consciousness. In: Cambridge handbook
of consciousness. Cambridge University Press, New York, USA.http://eprints.assc.caltech.edu/175/
2. Sagiv, N. and Ward, J. (2006) Crossmodal interactions: lessons from synesthesia. In: Visual Perception, Part 2. Progress in Brain Research,
Volume 155.http://eprints.assc.caltech.edu/224
3. Seth, A.K. and Baars, B.J. (2005) Neural Darwinism and Consciousness. Consciousness and Cognition, 14. pp. 140-168.http://eprints.assc.caltech.edu/163/
4. Dehaene, S., Changeux, J.-P., Naccache, L., Sackur, J. and Sergent, C. (2006) Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends in Cognitive Science, 10 (5). pp. 204-211.http://eprints.assc.caltech.edu/20/
5. Gennaro, R. J. (2007) Representationalism, peripheral awareness, and the transparency of experience. Philosophical Studies.http://eprints.assc.caltech.edu/218/