Friday, June 15, 2018

Comparing human prefrontal cortex to that of other primates

From Donahue et al.:

A longstanding controversy in neuroscience pertains to differences in human prefrontal cortex (PFC) compared with other primate species; specifically, is human PFC disproportionately large? Distinctively human behavioral capacities related to higher cognition and affect presumably arose from evolutionary modifications since humans and great apes diverged from a common ancestor about 6–8 Mya. Accurate determination of regional differences in the amount of cortical gray and subcortical white matter content in humans, great apes, and Old World monkeys can further our understanding of the link between structure and function of the human brain. Using tissue volume analyses, we show a disproportionately large amount of gray and white matter corresponding to PFC in humans compared with nonhuman primates.
Humans have the largest cerebral cortex among primates. The question of whether association cortex, particularly prefrontal cortex (PFC), is disproportionately larger in humans compared with nonhuman primates is controversial: Some studies report that human PFC is relatively larger, whereas others report a more uniform PFC scaling. We address this controversy using MRI-derived cortical surfaces of many individual humans, chimpanzees, and macaques. We present two parcellation-based PFC delineations based on cytoarchitecture and function and show that a previously used morphological surrogate (cortex anterior to the genu of the corpus callosum) substantially underestimates PFC extent, especially in humans. We find that the proportion of cortical gray matter occupied by PFC in humans is up to 1.9-fold greater than in macaques and 1.2-fold greater than in chimpanzees. The disparity is even more prominent for the proportion of subcortical white matter underlying the PFC, which is 2.4-fold greater in humans than in macaques and 1.7-fold greater than in chimpanzees.

No comments:

Post a Comment