Epigenetic mechanisms, such as histone modifications, regulate responsiveness to drugs of abuse, such as cocaine, but relatively little is known about the regulation of addictive-like behaviors by DNA methylation. To investigate the influence of DNA methylation on the locomotor-activating effects of cocaine and on drug-seeking behavior, rats receiving methyl supplementation via chronic L-methionine (MET) underwent either a sensitization regimen of intermittent cocaine injections or intravenous self-administration of cocaine, followed by cue-induced and drug-primed reinstatement. MET blocked sensitization to the locomotor-activating effects of cocaine and attenuated drug-primed reinstatement, with no effect on cue-induced reinstatement or sucrose self-administration and reinstatement. Furthermore, upregulation of DNA methyltransferase 3a and 3b and global DNA hypomethylation were observed in the nucleus accumbens core (NAc), but not in the medial prefrontal cortex (mPFC), of cocaine-pretreated rats. Glutamatergic projections from the mPFC to the NAc are critically involved in the regulation of cocaine-primed reinstatement, and activation of both brain regions is seen in human addicts when reexposed to the drug. When compared with vehicle-pretreated rats, the immediate early gene c-Fos (a marker of neuronal activation) was upregulated in the NAc and mPFC of cocaine-pretreated rats after cocaine-primed reinstatement, and chronic MET treatment blocked its induction in both regions. Cocaine-induced c-Fos expression in the NAc was associated with reduced methylation at CpG dinucleotides in the c-Fos gene promoter, effects reversed by MET treatment. Overall, these data suggest that drug-seeking behaviors are, in part, attributable to a DNA methylation-dependent process, likely occurring at specific gene loci (e.g., c-Fos) in the reward pathway.
This blog reports new ideas and work on mind, brain, behavior, psychology, and politics - as well as random curious stuff. (Try the Dynamic Views at top of right column.)
Wednesday, October 07, 2015
Methionine, an amino acid, enhances recovery from cocaine addiction.
Wright et al. use a mouse model to show that the common amino acid methionine - which can serve as a methyl group donor for the DNA methylation that regulates neural functions associated with learning, memory, and synaptic plasticity - can reduce addictive like behaviors such as drug seeking, and block a cocaine-induced marker of neuronal activation after reinstatement in the nucleus accumbens and the medial prefrontal cortex, two brain regions responsible for drug seeking and relapse. Here is the technical abstract:
Blog Categories:
acting/choosing,
attention/perception,
motivation/reward
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment