Zimmer points to a nice piece of work by
Tosches et al. suggesting that the melatonin rhythm that regulates our sleep may have arisen ~700 million years ago in a marine worm larvae - to regulate swarming up to the surface of the sea at twilight to feed and then sink back to lower depths during light to avoid sunlight and predation. A clip from the Zimmer review:
The new study offers an intriguing idea for how our vertebrate ancestors adapted the melatonin genes as they evolved a complex brain.
Originally, the day-night cycle was run by all-purpose cells that could catch light and make melatonin. But then the work was spread among specialized cells. The eyes now took care of capturing light, for example, while the pineal gland made melatonin.
The new study may also help explain how sleep cuts us off from the world. When we’re awake, signals from our eyes and other senses pass through the thalamus, a gateway in the brain. Melatonin shuts the thalamus down by causing its neurons to produce a regular rhythm of bursts. “They’re busy doing their own thing, so they can’t relay information to the rest of the brain,” Dr. Tosches said.
It may be no coincidence that in worms, melatonin also produces electrical rhythms that jam the normal signals of the day. We may sink into sleep the way our ancestors sank into the depths of the ocean.
No comments:
Post a Comment