From Coll et al.:
Significance
We often willingly experience pain to reach a goal. However, potential pain can also prevent reckless action. How do we consider future pain when deciding on the best course of action? To date, the precise neural mechanisms underlying the valuation of future pain remain unknown. Using functional MRI, we derive a whole-brain signature of the value of future pain capable of predicting participants’ choices to accept pain in exchange for a reward. We show that this signature is characterized by a distributed pattern of activity with clear contributions from structures encoding reward and salience, notably the ventral and dorsal striatum. These findings highlight how the brain assigns value to future pain when choosing the best course of action.Abstract
Pain is a primary driver of action. We often must voluntarily accept pain to gain rewards. Conversely, we may sometimes forego potential rewards to avoid associated pain. In this study, we investigated how the brain represents the decision value of future pain. Participants (n = 57) performed an economic decision task, choosing to accept or reject offers combining various amounts of pain and money presented visually. Functional MRI (fMRI) was used to measure brain activity throughout the decision-making process. Using multivariate pattern analyses, we identified a distributed neural representation predicting the intensity of the potential future pain in each decision and participants’ decisions to accept or avoid pain. This neural representation of the decision value of future pain included negative weights located in areas related to the valuation of rewards and positive weights in regions associated with saliency, negative affect, executive control, and goal-directed action. We further compared this representation to future monetary rewards, physical pain, and aversive pictures and found that the representation of future pain overlaps with that of aversive pictures but is distinct from experienced pain. Altogether, the findings of this study provide insights on the valuation processes of future pain and have broad potential implications for our understanding of disorders characterized by difficulties in balancing potential threats and rewards.