Friday, March 10, 2017

Meditating mice!

Here is an interesting twist from Weible et al., who find that inducing rhythms in the mouse anterior cingulate cortex similar to those observed in meditating humans lowers anxiety and levels of stress hormones like those reported in human studies:

Significance
Meditation training has been shown to reduce anxiety, lower stress hormones, improve attention and cognition, and increase rhythmic electrical activity in brain areas related to emotional control. We describe how artificially inducing rhythmic activity influenced mouse behavior. We induced rhythms in mouse anterior cingulate cortex activity for 30 min/d over 20 d, matching protocols for studying meditation in humans. Rhythmic cortical stimulation was followed by lower scores on behavioral measures of anxiety, mirroring the reductions in stress hormones and anxiety reported in human meditation studies. No effects were observed in preference for novelty. This study provides support for the use of a mouse model for studying changes in the brain following meditation and potentially other forms of human cognitive training.
Abstract
Meditation training induces changes at both the behavioral and neural levels. A month of meditation training can reduce self-reported anxiety and other dimensions of negative affect. It also can change white matter as measured by diffusion tensor imaging and increase resting-state midline frontal theta activity. The current study tests the hypothesis that imposing rhythms in the mouse anterior cingulate cortex (ACC), by using optogenetics to induce oscillations in activity, can produce behavioral changes. Mice were randomly assigned to groups and were given twenty 30-min sessions of light pulses delivered at 1, 8, or 40 Hz over 4 wk or were assigned to a no-laser control condition. Before and after the month all mice were administered a battery of behavioral tests. In the light/dark box, mice receiving cortical stimulation had more light-side entries, spent more time in the light, and made more vertical rears than mice receiving rhythmic cortical suppression or no manipulation. These effects on light/dark box exploratory behaviors are associated with reduced anxiety and were most pronounced following stimulation at 1 and 8 Hz. No effects were seen related to basic motor behavior or exploration during tests of novel object and location recognition. These data support a relationship between lower-frequency oscillations in the mouse ACC and the expression of anxiety-related behaviors, potentially analogous to effects seen with human practitioners of some forms of meditation.

No comments:

Post a Comment