The cerebral cortex has the ability to adapt to altered sensory inputs. In the visual cortex, a small lesion to the retina causes the deprived cortical region to become responsive to adjacent parts of the visual field. This extensive topographic remapping is assumed to be mediated by the rewiring of intracortical connections, but the dynamics of this reorganization process remain unknown. We used repeated intrinsic signal and two-photon imaging to monitor functional and structural alterations in adult mouse visual cortex over a period of months following a retinal lesion. The rate at which dendritic spines were lost and gained increased threefold after a small retinal lesion, leading to an almost complete replacement of spines in the deafferented cortex within 2 months. Because this massive remodeling of synaptic structures did not occur when all visual input was removed, it likely reflects the activity-dependent establishment of new cortical circuits that serve the recovery of visual responses.
This blog reports new ideas and work on mind, brain, behavior, psychology, and politics - as well as random curious stuff. (Try the Dynamic Views at top of right column.)
Tuesday, November 18, 2008
Massive reorganization of visual cortex at the level of dendritic spines..
Keck et al. do elegant experiments to directly observe spine replacement in individual apical dendritic tufts of layer-5 pyramidal neurons, replacement that correlates with functional recovery over a period of months after lesioning the retinal input:
Blog Categories:
attention/perception,
brain plasticity
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment