Tuesday, May 13, 2014

GABA predicts time perception.

Individuals can vary widely in their ability to detect sub-second visual stimuli, and most cognitive training and exercise regimes have exercises designed to enhance detection of shorter (50-200 millisecond) intervals. Terhune et al. make the interesting observation that this variability correlates with the resting state levels of the inhibitory transmitter GABA (gamma-amino butyric acid)in our visual cortex, such that elevated GABA is associated with underestimating the duration of subsecond visual intervals:
Our perception of time constrains our experience of the world and exerts a pivotal influence over a myriad array of cognitive and motor functions. There is emerging evidence that the perceived duration of subsecond intervals is driven by sensory-specific neural activity in human and nonhuman animals, but the mechanisms underlying individual differences in time perception remain elusive. We tested the hypothesis that elevated visual cortex GABA impairs the coding of particular visual stimuli, resulting in a dampening of visual processing and concomitant positive time-order error (relative underestimation) in the perceived duration of subsecond visual intervals. Participants completed psychophysical tasks measuring visual interval discrimination and temporal reproduction and we measured in vivo resting state GABA in visual cortex using magnetic resonance spectroscopy. Time-order error selectively correlated with GABA concentrations in visual cortex, with elevated GABA associated with a rightward horizontal shift in psychometric functions, reflecting a positive time-order error (relative underestimation). These results demonstrate anatomical, neurochemical, and task specificity and suggest that visual cortex GABA contributes to individual differences in time perception.

No comments:

Post a Comment