Monday, March 04, 2019

Our emotional reward from music is modulated by dopamine.

Ferreri et al. present evidence that enhancing or inhibiting dopamine signaling using levodopa or risperidone modulates the pleasure experienced while listening to music:

Significance
In everyday life humans regularly seek participation in highly complex and pleasurable experiences such as music listening, singing, or playing, that do not seem to have any specific survival advantage. The question addressed here is to what extent dopaminergic transmission plays a direct role in the reward experience (both motivational and hedonic) induced by music. We report that pharmacological manipulation of dopamine modulates musical responses in both positive and negative directions, thus showing that dopamine causally mediates musical reward experience.
Abstract
Understanding how the brain translates a structured sequence of sounds, such as music, into a pleasant and rewarding experience is a fascinating question which may be crucial to better understand the processing of abstract rewards in humans. Previous neuroimaging findings point to a challenging role of the dopaminergic system in music-evoked pleasure. However, there is a lack of direct evidence showing that dopamine function is causally related to the pleasure we experience from music. We addressed this problem through a double blind within-subject pharmacological design in which we directly manipulated dopaminergic synaptic availability while healthy participants (n = 27) were engaged in music listening. We orally administrated to each participant a dopamine precursor (levodopa), a dopamine antagonist (risperidone), and a placebo (lactose) in three different sessions. We demonstrate that levodopa and risperidone led to opposite effects in measures of musical pleasure and motivation: while the dopamine precursor levodopa, compared with placebo, increased the hedonic experience and music-related motivational responses, risperidone led to a reduction of both. This study shows a causal role of dopamine in musical pleasure and indicates that dopaminergic transmission might play different or additive roles than the ones postulated in affective processing so far, particularly in abstract cognitive activities.
From a review piece by Goupil and Aucouturier in the same PNAS issue:
This result is the latest development in an already remarkable series of studies by the groups of Robert Zatorre and Antoni Rodriguez-Fornells on the implication of the reward system in musical emotions. In their seminal 2001 study, Blood and Zatorre used the PET imaging technique to show that episodes of peak emotional responses to music (or musical “chills”) were associated with increased blood flow in the ventral striatum, the amygdala, and other brain regions associated with emotion and reward. In a 2011 follow-up study, Salimpoor et al. then relied on [11C]raclopride PET—a technique that allows estimating dopamine release in cerebral tissue—to show that peak emotional arousal during music listening is associated with the simultaneous release of dopamine in the bilateral dorsal and ventral striatum. With the increasing spatial resolution of fMRI techniques, in 2013 the same team was able to narrow in on a specific dopaminoceptive subregion of the ventral striatum, the nucleus accumbens (NAcc). Specifically, they found that NAcc activity during music listening is associated with how much money participants are subsequently willing to pay for the songs that they found pleasurable. In a final salvo to establish not only the correlational but also the causal implication of dopamine in musical pleasure, the authors have turned to directly manipulating dopaminergic signaling in the striatum, first by applying excitatory and inhibitory transcranial magnetic stimulation over their participants’ left dorsolateral prefrontal cortex, a region known to modulate striatal function, and finally, in the current study, by administrating pharmaceutical agents able to alter dopamine synaptic availability, both of which influenced perceived pleasure, physiological measures of arousal, and the monetary value assigned to music in the predicted direction.
The finding that music constitutes a privileged stimulus able to activate phylogenetically ancient systems involved in valuation and motivation may very well be interpreted as an indication that the human brain contains an adaptive neural specialization for processing music as a rewarding stimulus. As such, one might wonder whether the crucial question for future research is not so much whether music is rewarding, but rather why.

No comments:

Post a Comment