Tuesday, March 05, 2019

Even 10 minutes of low intensity physical activity enhances executive function in older adults

Petrella et al. (open source) find that executive function in older adults is boosted almost immediately by low intensity exercise as brief as 10 minutes. When a group of 17 older adults with average age of 73 engaged moderate, heavy and very heavy levels of brief exercise, the authors found that the magnitude of the post-exercise executive function benefit did not vary that much with intensity. They evaluated executive function with a pre- and post-exercise antisaccade task. Antisaccades require that an individual look (i.e., saccade) mirror-symmetrical to a visual stimulus and result in longer reaction times, increased directional errors, and less accurate and more variable endpoints than their prosaccade (i.e., saccade to a target’s veridical location) counterparts. Here is the detailed abstract:

•Antisaccades assess executive function.
•Older adults show decreased antisaccade reaction times following exercise.
•The executive benefit is observed across moderate to very-heavy exercise intensities.
•Older adults demonstrate subtle executive-related aerobic exercise effects.
Ten minutes of aerobic or resistance training can ‘boost’ executive function in older adults. Here, we examined whether the magnitude of the exercise benefit is influenced by exercise intensity. Older adults (N = 17: mean age = 73 years) completed a volitional test to exhaustion (VO2peak) via treadmill to determine participant-specific moderate (80% of lactate threshold (LT)), heavy (15% of the difference between LT and VO2peak) and very-heavy (50% of the difference between LT and VO2peak) exercise intensities. Subsequently, in separate sessions all participants completed 10-min constant load single-bouts of exercise at each intensity. Pre- and post-exercise executive function were examined via the antisaccade task. Antisaccades require a saccade mirror-symmetrical to a target and extensive evidence has shown that antisaccades are supported via frontoparietal networks that demonstrate task-dependent changes following single-bout and chronic exercise. We also included a non-executive task (saccade to veridical target location; i.e., prosaccade) to determine whether a putative post-exercise benefit is specific to executive-related oculomotor control. Results showed that VO2 and psychological ratings of perceived exertion concurrently increased with increasing exercise intensity. As well, antisaccade reaction times showed a 24 ms (i.e., 8%) reduction from pre- to post-exercise assessments (p less than .001), whereas prosaccade values did not (p = .19). Most notably, the post-exercise change in antisaccade RTs did not reliably vary with exercise intensity. Further, for each exercise intensity participants’ cardiorespiratory fitness level was unrelated to the magnitude of the post-exercise executive benefit (ps greater than .13). Accordingly, an exercise duration as brief as 10-min provides a selective benefit to executive function in older adults across the continuum of moderate to very-heavy intensities.

No comments:

Post a Comment