Tuesday, July 09, 2013

Order your DIY brain stimulation kit to improve your cognition?

Nature Magazine has an interesting editorial on dealing with the fact that transcranial direct-current stimulation (tDCS) kits (costing ~ $200) are likely to soon get into the hands, and onto the heads, of many more people. A few clips:
The recent surge in interest in tDCS piggybacks on an increasing number of academic studies of its potential to boost cognitive ability, which themselves build on decades-old work using electrical stimulation of the brain to treat ailments such as depression (see Nature 472, 156–159; 2011).
In an opinion piece published earlier this month, Nicholas Fitz and Peter Reiner of the National Core for Neuroethics at the University of British Columbia in Vancouver, Canada, argue that scientists and regulators can no longer ignore the amateurish meddling with tDCS (N. Fitz and P. Reiner J. Med. Ethics http://doi.org/mv8; 2013). “The challenge for the field,” they write, “is to develop policy that thoughtfully deals with the issues stemming from people using tDCS devices at home.”
Such home use of experimental laboratory kit puts neuroethicists, and journals such as Nature, in a bind. To draw attention to it could promote and accelerate its use, and so increase the risk of a mishap. To ignore it leaves the risks unexplored. The scale of at-home tDCS use is unclear at present. It might fizzle out. Or, as scientific interest in the power of electrical stimulation of the brain grows, it might appeal to more enthusiasts, just as the fascination and potential of synthetic biology has spawned a parallel DIY community known as biohackers. The scientific interest is certainly there.
Last month, researchers at the University of Oxford, UK, published a study suggesting that random electrical stimulation of the brain could improve mathematical abilities (A. Snowball et al.Curr. Biol. 23, 987–992; 2013). And there is no lack of exposure. Drawn by the ease of access and the killer copy, science journalists are queuing up to try tDCS for themselves and to write about the effects.
Fitz and Reiner are not the first to raise concerns over the DIY tDCS community. Brain researchers flagged the problem last year, as part of a discussion on the broader ethics of using non-invasive brain-stimulation (R. Cohen Kadosh et al. Curr. Biol. 22, R108–R111; 2012). The researchers even raised the prospect of the ultimate in pushy parents: those who would use the technology on their children to try to boost their cognitive function. And back in 2011, scientists working on tDCS told Nature that they were concerned for the safety of those who tried it at home.
It is easier to raise these questions than to answer them. Fitz and Reiner have some sensible suggestions, ranging from greater reporting of the possible long-term risks of tDCS to mimicking the open communication and education strategy with which the life-sciences field has started to engage biohackers. The first step is to acknowledge the issue to get a sense of how widespread the demand for home electrical self-improvement really is. The next few months will tell us more.

1 comment:

  1. One practical response to this dilema is to encourage indiviuals to form local groups who meet and discuss the science and dangers. In this way decreasing impluse driven uninformed behavior via group feedback. Random tech/science backgrouds of group members can compensate for dangerous ignorant behavior. I run an educational neuroscience nonprofit for example that could facilitate such group formation.

    ReplyDelete