We are living, we have long been told, in the Information Age. Yet now we are faced with the sickening suspicion that technology has run ahead of us. Man is a fire-stealing animal, and we can’t help building machines and machine intelligences, even if, from time to time, we use them not only to outsmart ourselves but to bring us right up to the doorstep of Doom.
We are still fearful, superstitious and all-too-human creatures. At times, we forget the magnitude of the havoc we can wreak by off-loading our minds onto super-intelligent machines, that is, until they run away from us, like mad sorcerers’ apprentices, and drag us up to the precipice for a look down into the abyss.
As the financial experts all over the world use machines to unwind Gordian knots of financial arrangements so complex that only machines can make — “derive” — and trade them, we have to wonder: Are we living in a bad sci-fi movie? Is the Matrix made of credit default swaps?
When Treasury Secretary Paulson (looking very much like a frightened primate) came to Congress seeking an emergency loan, Senator Jon Tester of Montana, a Democrat still living on his family homestead, asked him: “I’m a dirt farmer. Why do we have one week to determine that $700 billion has to be appropriated or this country’s financial system goes down the pipes?”
“Well, sir,” Mr. Paulson could well have responded, “the computers have demanded it.”
This blog reports new ideas and work on mind, brain, behavior, psychology, and politics - as well as random curious stuff. (Try the Dynamic Views at top of right column.)
Friday, October 17, 2008
The rise of the machines
Men and women - different gene expression changes in brain on aging
Gene expression profiles were assessed in the hippocampus, entorhinal cortex, superior-frontal gyrus, and postcentral gyrus across the lifespan of 55 cognitively intact individuals aged 20–99 years. Perspectives on global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age in the superior-frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the sixth to seventh decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with down-regulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with proportionally greater activation in the female brain. These data open opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain and suggest that this balance is set differently in males and females, an intriguing idea.
Thursday, October 16, 2008
Embodyment and Art
Arguing for Embodied Consciousness
...his overall task is to address the befuddled dualism that still dominates most of our intellectual disciplines...Slingerland's central theme is that everything human has evolved in the interests of the materiality of the body. He identifies objectivist realism and postmodern relativity, both insufficiently attentive to the body, as the major epistemologies to be swept away, followed by the dualism of body and soul. For Slingerland, the presiding genii behind such a cleansing are George Lakoff and Mark Johnson, with heavier debts to Johnson [whose terse summary of embodiment in (1) appeared too late for Slingerland to reference]. They view all thought and human behavior as generated by the body and expressed as conceptual metaphors that translate physical categories (such as forward, backward, up, and down) into abstract categories (such as progress, benightedness, divinity, immorality). These body-driven metaphors, Slingerland writes, are a "set of limitations on human cognition, constraining human conceptions of entities, categories, causation, physics, psychology, biology, and other humanly relevant domains."
The supposedly objective world is not "some preexisting object out there in the world, with a set of invariant and observer-independent properties, simply waiting to be found the way one finds a lost sock under the bed." All we can ever see or understand is what our own bodily faculties permit via the current structure of the brain.
In opposition to objective realism, postmodern relativity regards language and culture as constituting the only "real" world possible for us. It posits an endless hall of mirrors with no access to outside--epitomized by Derrida's notorious remark that there is nothing (at least for humans) outside of texts (i.e., culture). This view, which dominated the humanities for several decades, is mercifully beginning to fade as the cognitive sciences have matured and are increasingly promulgated.
Even though the knowing human subject is itself just a thing and not an immaterial locus of reason, the universe it experiences is as real and functional for us as any "thing" could possibly be. We do get some things "right," even if we can never know the noumenal genesis behind our knowledge. And the very concept of noumena (things in themselves independent of any observer) now seems somewhat obsolete, given that the intuition of discrete, self-bounded "things" is as built-in to the human psyche as the Kantian intuitions of space and time, grounding all experience.
Our million billion synapses produce a "person" with the illusion of a self. Slingerland holds that "we are robots designed to be constitutionally incapable of experiencing ourselves and other conspecifics as robots." Our innate and overactive theory of mind (that other people, like ourselves, have "intentions") projects agency onto everything--in the past, even onto stones and trees. The "hard problem" for philosophy of consciousness (to use David Chalmers's phrase) remains: what are thoughts, cogitations, thinkers, qualia? Chalmers's solution, alas, swept away Cartesian dualism only to sneak his own magic spook, conscious experience (for him, on par with mass, charge, and space-time), in through the back door (2, 3).
Slingerland starts with Darwin and eventually follows Daniel Dennett so far as to agree that consciousness can be done full justice through third-person descriptions that require no mysterious, unaccounted-for, nonmaterial, first-person entity as substrate. Thus the famous "Mary," who intellectually knows everything there is to know about color despite having been sequestered for life in a color-free lab, will recognize red the first time she steps outside (4). And Thomas Nagel's famous bats don't know anything about bathood that we can't figure out for ourselves from observation (5). No first-person construct, no locus of consciousness, need be invoked.
The next step, if you want to go so far (the jury is out), is to eliminate consciousness altogether, because there's nothing for it to do that can't be done without it. And with it, you need a spook to keep the show on the road. Choose your insoluble problem: eliminate consciousness altogether as superfluous or explain it (if there's really a you who makes such choices). Slingerland prefers the first option.
His conclusion, which I can hardly do justice to here, is relatively satisfying. He notes that although we don't have great difficulty knowing that Earth revolves around the Sun while feeling that the Sun is rising and setting (Dennett's favorite example of folk psychology), "no cognitively undamaged human being can help acting like and at some level really feeling that he or she is free"--however nonsensical the notion of agencyless free will (i.e., "choices" without a self to make them). Still, once the corrosive acid of Darwinism [to use Dennett's figure from (6)] has resolved the body-mind dualism into body alone, some but not most of us are able "to view human beings simultaneously under two descriptions: as physical systems and as persons."
References
1. M. Johnson, The Meaning of the Body: Aesthetics of Human Understanding (Univ. of Chicago Press, Chicago, 2007).
2. D. J. Chalmers, J. Consciousness Stud. 2, 200 (1995).
3. D. J. Chalmers, The Conscious Mind: In Search of a Fundamental Theory (Oxford Univ. Press, Oxford, 1996).
4. F. Jackson, Philos. Q. 32, 127 (1982).
5. T. Nagel, Philos. Rev. 83, 435 (1974).
6. D. C. Dennett, Darwin's Dangerous Idea: Evolution and the Meaning of Life (Simon and Schuster, New York, 1995).
Your bladder and your brain.
Neural circuits that allow for reciprocal communication between the brain and viscera are critical for coordinating behavior with visceral activity. At the same time, these circuits are positioned to convey signals from pathologic events occurring in viscera to the brain, thereby providing a structural basis for comorbid central and peripheral symptoms. In the pons, Barrington's nucleus and the norepinephrine (NE) nucleus, locus coeruleus (LC), are integral to a circuit that links the pelvic viscera with the forebrain and coordinates pelvic visceral activity with arousal and behavior. Here, we demonstrate that a prevalent bladder dysfunction, produced by partial obstruction in rat, has an enduring disruptive impact on cortical activity through this circuit. Within 2 weeks of partial bladder obstruction, the activity of LC neurons was tonically elevated. LC hyperactivity was associated with cortical electroencephalographic activation that was characterized by decreased low-frequency (1–3 Hz) activity and prominent theta oscillations (6–8 Hz) that persisted for 4 weeks. Selective lesion of the LC–NE system significantly attenuated the cortical effects. The findings underscore the potential for significant neurobehavioral consequences of bladder disorders, including hyperarousal, sleep disturbances, and disruption of sensorimotor integration, as a result of central noradrenergic hyperactivity. The results further imply that pharmacological manipulation of central NE function may alleviate central sequelae of these visceral disorders.
Wednesday, October 15, 2008
Applied neuroeconomics - the fear of loss
fear now seems to rule, with investors often exhibiting a Wall Street version of the fight-or-flight mechanism — selling first, and asking questions later...some analysts are starting to suggest the markets are showing signs of “capitulation” — what happens when even the bullish holdouts, the unflagging optimists, throw up their hands and join the stampede out of the market...To some, signs of capitulation can be read as an indicator that the bottom may be near.The opposite swing of the cycle is buying at the top of a bubble. I remember during my winter stays in Ft. Lauderdale in 2005 and 2006, every fourth person I chatted with seemed to be a realtor and dinner conversations were dominated by stories about fast profits on flipped condominiums.
Wordwatchers
Predicting how they will govern. Most language dimensions that we study are probably better markers of how people will lead than who will vote for them. Some dimensions that are relevant include:
Cognitive complexity. A particularly reliable marker of cognitive complexity is the exclusive word dimension. Exclusive words such as but, except, without, exclude, signal that the speaker is making an effort to distinguish what is in a category and not in a category. Those who use more exclusive words make better grades in college, are more honest in lab studies, and have more nuanced understanding of events and people. Through the primaries until now, Obama has consistently been the highest in exclusive word use and McCain the lowest.
Categorical versus fluid thinking. Some people naturally approach problems by assigning them to categories. Categorical thinking involves the use of articles (a, an, the) and concrete nouns. Men, for example, use articles at much higher rates than women. Fluid thinking involves describing actions and changes, often in more abstract ways. A crude measure of fluid thinking is the use of verbs. Women use verbs more than men.
McCain and Obama could not be more different in their use of articles and verbs. McCain uses verbs at an extremely low rate and articles at a fairly high rate. Obama, on the other hand, is remarkably high in his use of verbs and low in his use of articles. These patterns suggest that McCain’s natural way of understanding the world is to first label the problem and find a way to put it into a pre-existing category. Obama is more likely to define the world as ongoing actions or processes.
Personal and socially connected. Individuals who think about and try to connect with others tend to use more personal pronouns (I, we, you, she, they) than those who are more socially detached. Bush was higher than Kerry or Gore. McCain has consistently been much higher than any other candidate in this election cycle. His use of 1st person singular (I, me, my) is particularly high which often signals an openness and honesty. Obama uses personal pronouns at moderate levels - similar to Hillary Clinton and most other primary candidates of both parties.
Restrained versus impulsive. People vary in the degree to which they act quickly or shoot from the hip versus stand back and consider their options. Over the last few years, some have argued that the use of negations (e.g., no, not, never) indicate a sign of inhibition or constraint. Low use of negations may be linked to impulsiveness. Bush was low in negations whereas Kerry was quite high. Across the election cycle, Obama has consistently been the highest user of negations - suggesting a restrained approach - where as McCain has been the lowest - a more impulsive way of dealing with the world.
Tuesday, October 14, 2008
MRI of moral emotions while causing harm.
The statement "An agent harms a victim" depicts a situation that triggers moral emotions. Depending on whether the agent and the victim are the self or someone else, it can lead to four different moral emotions: self-anger ("I harm myself"), guilt ("I harm someone"), other-anger ("someone harms me"), and compassion ("someone harms someone"). In order to investigate the neural correlates of these emotions, we examined brain activation patterns elicited by variations in the agent (self vs. other) and the victim (self vs. other) of a harmful action. Twenty-nine healthy participants underwent functional magnetic resonance imaging while imagining being in situations in which they or someone else harmed themselves or someone else. Results indicated that the three emotional conditions associated with the involvement of other, either as agent or victim (guilt, other-anger, and compassion conditions), all activated structures that have been previously associated with the Theory of Mind (ToM, the attribution of mental states to others), namely, the dorsal medial prefrontal cortex, the precuneus, and the bilateral temporo-parietal junction. Moreover, the two conditions in which both the self and other were concerned by the harmful action (guilt and other-anger conditions) recruited emotional structures (i.e., the bilateral amygdala, anterior cingulate, and basal ganglia). These results suggest that specific moral emotions induce different neural activity depending on the extent to which they involve the self and other.
This year's Ig-Noble prize in cognitive science goes to a slime mold
Slime moulds exhibit the kind of "contemplative behaviour" that Hamlet is famous for, muses Toshiyuki Nakagaki of Hokkaido University in Japan. ...The slime mold's puzzle-solving ability — Shakespearean or otherwise — is a discovery that is unlikely to change the world, but it won Nakagaki and his colleagues an Ig Nobel Prize for cognitive science last week at the annual event held at Harvard University in Cambridge, Massachusetts. Their research... showed that slime molds looking for food have "the ability to find the minimum-length solution between two points in a labyrinth".
Subsequently, the team has found that molds can find the shortest path between 30–50 points, which is something even supercomputers cannot yet work out. "We can't even check the mold's solution," notes Nakagaki, "but it looks good."
Monday, October 13, 2008
How context can set our emotional reaction to a smell.
How does selective attention to affect influence sensory processing? In a functional magnetic resonance imaging investigation, when subjects were instructed to remember and rate the pleasantness of a jasmin odor, activations were greater in the medial orbitofrontal and pregenual cingulate cortex than when subjects were instructed to remember and rate the intensity of the odor. When the subjects were instructed to remember and rate the intensity, activations were greater in the inferior frontal gyrus. These top–down effects occurred not only during odor delivery but started in a preparation period after the instruction before odor delivery, and continued after termination of the odor in a short-term memory period. Thus, depending on the context in which odors are presented and whether affect is relevant, the brain prepares itself, responds to, and remembers an odor differently. These findings show that when attention is paid to affective value, the brain systems engaged to prepare for, represent, and remember a sensory stimulus are different from those engaged when attention is directed to the physical properties of a stimulus such as its intensity. This differential biasing of brain regions engaged in processing a sensory stimulus depending on whether the cognitive demand is for affect-related versus more sensory-related processing may be an important aspect of cognition and attention. This has many implications for understanding the effects not only of olfactory but also of other sensory stimuli.
Autistic people have the visual acuity of hawks.
Early Fall on Twin Valley Road
Friday, October 10, 2008
We seek mates that resemble our opposite-sex parents.
Former studies have suggested that imprinting-like processes influence the shaping of human mate preferences. In this study, we provide more direct evidence for assessing facial resemblance between subjects' partner and subjects' parents. Fourteen facial proportions were measured on 312 adults belonging to 52 families, and the correlations between family members were compared with those of pairs randomly selected from the population. Spouses proved to be assortatively mated in the majority of measured facial proportions. Significant correlations have been found between the young men and their partner's father (but not his mother), especially on facial proportions belonging to the central area of the face. Women also showed resemblance to their partner's mother (but not to their father) in the facial characteristics of their lower face. Replicating our previous studies, facial photographs of participants were also matched by independent judges who ascribed higher resemblance between partners, and subjects and their partners' opposite-sex parents, compared with controls. Our results support the sexual imprinting hypothesis which states that children shape a mental template of their opposite-sex parents and search for a partner who resembles that perceptual schema. The fact that only the facial metrics of opposite-sex parents showed resemblance to the partner's face tends to rule out the role of familiarity in shaping mating preferences. Our findings also reject several other rival hypotheses. The adaptive value of imprinting-related human mating is discussed, and a hypothesis is made of why different facial areas are involved in males' and females' search for resemblance.
Light exciting our eyes, an intimate picture.
a, Rhodopsin, shown here in its inactivated conformation, is a light-sensing receptor found in cell membranes. It consists of a protein (opsin, green) and a ligand (retinal, pink, also shown in its inactivated conformation). When activated by light, rhodopsin binds to part of an adjacent G protein (binding region in red), triggering a cascade of biological responses. The protein plug (blue) is part of the extracellular domain of opsin, and immobilizes the extracellular transmembrane segments of the receptor. b, Scheerer et al. have determined the activated structure of opsin in complex with the receptor-binding peptide fragment of the G protein (the Galpha peptide). The most notable difference when compared with the inactivated receptor is that transmembrane helix 6 (TM-VI) has moved substantially outward (indicated by the red arrow), thereby creating the binding pocket for the G-protein peptide.
Thursday, October 09, 2008
Models to compute and predict our current economic chaos?
Visualization challenge.
Wednesday, October 08, 2008
Instinctual basis of fury at Wall Street
The fury is based in instincts that have had a protective and often stabilizing effect on communities throughout human history. Small, integrated groups in particular often contain members who will stand up and — often at significant risk to themselves — punish cheaters, liars and freeloaders...The catch in this highly sensitive system, most researchers agree, is that it most likely evolved to inoculate small groups against invasive rogues, and not to set right the excesses of a vast and wildly diverse community like the American economy. Some experts believe that Japan’s disastrous delay in bailing out its banks in the early 1990s was caused in part by a collective urge to punish corrupt bankers, and they fear a similar outcome today.Carey describes a variety of investment game experiments that probe, for example, how our retribution behaviors depend on whether we are being observed by others.
Feeling helpless can enhance our magical thinking
We present six experiments that tested whether lacking control increases illusory pattern perception, which we define as the identification of a coherent and meaningful interrelationship among a set of random or unrelated stimuli. Participants who lacked control were more likely to perceive a variety of illusory patterns, including seeing images in noise, forming illusory correlations in stock market information, perceiving conspiracies, and developing superstitions. Additionally, we demonstrated that increased pattern perception has a motivational basis by measuring the need for structure directly and showing that the causal link between lack of control and illusory pattern perception is reduced by affirming the self. Although these many disparate forms of pattern perception are typically discussed as separate phenomena, the current results suggest that there is a common motive underlying them.
Tuesday, October 07, 2008
A college course blog - The Biology of Mind course at the Univ. of Wisconsin
I am doing a unique experiment with my course this semester, "Biology of Mind." The course has a history of collaborative peer review on writing assignments, and the students do a lot of writing -- students who earn an "A" in the course will be required to produce 10,000 words of written assignments during the semester. In the past, I have used the university's online course system to administer the assignments, and the students have really benefited from their peers' feedback as well as my own.This semester, I've decided to take it all public. The students are collaborating as before, except this semester they are doing it on a blog. The blog's name is "Biology of Mind", and it has been up and running for a couple of weeks. Right now there are over 200 posts over there, and the number continues to grow.
The students write weekly reviews of papers in psychology, neuroscience, evolutionary biology, philosophy of mind, and naturally anthropology -- a broad scope. Many of the students have been following new research, others have chosen to delve more deeply into the history of one or more fields. In any event, if you're interested in the brain, you may like this site. I think the students (mostly seniors with some graduate students) are producing some nice work, and the site is open for feedback from the public as well.