Sunday, May 04, 2008

At Deric and MindBlog's home...

Spring around the 1860 stone schoolhouse on Twin Valley Rd. in Middleton WI. is taking its time. It was a very hard winter.


Friday, May 02, 2008

Despair, Inc.

Out of good 'ol Austin Texas (the original slacker capital), this foil to today's first post (see below), a great site of demotivational materials - just the antidote one needs to the happiness and corporate motivation industry. Check out the lithographs and also the article by Rob Walker.

Above, the "this glass is now half empty" cup; below right, the "GIVE UP" lithograph: "At some point, hanging in there just makes you look like an even bigger loser."

Happiness is...

...having what you want, wanting what you have, or both? In Rabbi Hyman Schachtel's 1954 book on "The real enjoyment of living" he proposed that "happiness is not having what you want, but wanting what you have." To test this idea Larsen and McKibban subject psychology undergraduates at Texas Tech Univ. in Lubbock, TX. to experiments in which they generate lists of "items that you have in your life, as well as items that you want." Both variables accounted for unique variance in happiness. (The students also completed several different standard subjective happiness questionaires.)


As suggested by Schachtel's maxim, participants who wanted what they had more than others did tended to be happier, r = .36, prep > .99 (see Figure, left panel). In addition, however, those who had more of what they wanted tended to be happier, r = .41, prep > .99 (Figure, right panel), as did those who simply had more things, r = .25, prep = .97. In contrast, the extent to which people simply wanted things was uncorrelated with happiness, r = .11.3

Thursday, May 01, 2008

An integrated view of our subjective energies.

I recently attended the Wisconsin Symposium on Emotion (Now in its 14th year). Its topic was "Emotion, Consciousness and Psychopathology." I want to mention the talk given by A.D.(Bud) Craig, which was a real tour de force, the kind of science I feel I can integrate with my own personal experience. Its title was "How do you feel? The neurobiological basis for human awareness of feelings from the body." I have referenced Craig's work in previous posts, also check here. Here are PDFs of his two recent review articles in Trends in Cognitive Science (2005) and Nature Reviews Neuroscience (2002) which I recommend.

His view is that in our nervous systems, there is a fundamental bilateral partitioning or separation, from basic spinal cord and brain stem homeostatic systems to our highest prefrontal lobe functions, in which the right side spends energy and the left side brings it in. This reflects the relative activities of the sympathetic versus parasympathetic nervous systems. (enter 'parasympathetic' in the google search box in the left column to see some previous mindblog posts on autonomic regulation of chilling out versus getting excited).

The right and left insula appear to be central in processing feelings, all the way from basic (interoceptive) body sensing (posterior insula) up through subjective feelings, disgust, trust, anger, social hurt, empathic happiness, lust, pain, etc. All of these are homeostatic emotional currency that help regular body balance all the way from from blood pressure, glucose, heart rate, salt regulation, up through social self image. Here is a graphic from his 2005 article that shows the central role of the left and right anterior insula (which act as the sensory cortex of limbic system) in receiving information about body state and feeling from sympathetic and parasympathetic input and then interacting with anterior cingulate (the motor cortex of the limbic system) and frontal cortex. (click to enlarge):


Positive emotions (pleasant music, maternal emotions) correlate with enhanced left parasympathic, left anterior insula, left anterior cingulate and left frontal activation, while negative emotions (anger, fear, etc.) enhance activation of the corresponding structures on the right side.

Some very simple manipulations can stroke the relative activation of these two systems. Slowing one's breathing, as usually happens during meditation dials up the left anterior insula system, while breathing more rapidly increases anxiety and right anterior insula activity. In fact, giving instruction to a subject to breathe more slowly or more rapidly can change their emotional reaction to stimuli. In one experiment mentioned by Craig, a picture of a baby seal elicited warm nuturing emotions when breathing was slowed, but when breathing was increased, subjects were more likely to suspect the seal might attack or bite them! Experiments are now being attempted to measure whether oxytocin (the affiliative, trusting hormone) correlate with left insular activation while right insula activation correlates with cortisone (the stress hormone) release.

This sort of global description fascinates me, because it instructs us in how integrated a package we are, and how attention to some of the basement details of our daily life (such as breathing) can fundamentally alter our mood and temperament.

Attention regulation in meditation

From the Laboratory of Affective Neuroscience at the Univ. of Wisc. in Madison, Lutz, Davidson and collegues offer a review in Trends in Cognitive Science (PDF here) of studies of the effects on attention and emotion processes of two broad categories of meditation: focused attention and open monitoring.

Wednesday, April 30, 2008

Enhance your working intelligence with simple exercises...

Bakalar points to an interesting study by Jaeggi et al. showing that fluid intelligence (the kind of mental ability that allows us to solve new problems without having any relevant previous experience) can be enhanced by simple working memory training. It turns out that carefully structured training of the kind of memory that allows memorization of a telephone number just long enough to dial it enhances performance on standard tests of fluid intelligence. This suggests that fluid intelligence and working memory depend on the same brain circuitry.

Fairness activates brain reward circuitry.

Some interesting observations from Tabibnia et al. They:
...examined self-reported happiness and neural responses to fair and unfair offers while controlling for monetary payoff. Compared with unfair offers of equal monetary value, fair offers led to higher happiness ratings and activation in several reward regions of the brain. Furthermore, the tendency to accept unfair proposals was associated with increased activity in right ventrolateral prefrontal cortex, a region involved in emotion regulation, and with decreased activity in the anterior insula, which has been implicated in negative affect. This work provides evidence that fairness is hedonically valued and that tolerating unfair treatment for material gain involves a pattern of activation resembling suppression of negative affect.

Figure legend - Ventromedial prefrontal cortex (VMPFC), ventral striatum, and amygdala activation associated with fairness preference. The illustration (a) shows the location of clusters with significantly greater activation in response to fair compared with unfair offers.



Figure legend - Brain activation associated with the tendency to accept unfair offers. The illustrations show the location of areas in (a) left anterior insula and (c) right ventrolateral prefrontal cortex (right VLPFC) whose activation predicted this tendency.

Tuesday, April 29, 2008

More on language and perception...

Christine Kenneally writes a nice summary of current work on how language can nudge our perception. One interesting result demonstrates that labeling different categories enhances one's ability to discriminate between them. She discusses the work of Boroditsky mentioned in my Feb. 22 post, and work showing that in giving us symbols for spatial patterns, spatial language helps us carve up the world in specific ways. It appears that the ability to count is necessary to deal with large, specific numbers. And the only way to count past a certain point is with language.

The secret life of emotions.

Another demonstration that we can be nudged by unconscious emotional stimuli - that both global and specific emotional responses can be induced without awareness. From the discussion of an article with the title of this post from Ruys and Stapel, whose results show:
...that specific emotions can be elicited without conscious awareness of their cause...disgusting pictures (presented for 120 msec, not perceived) increased cognitive accessibility of disgust words and feelings of disgust. Similarly, fearful pictures increased cognitive accessibility of fear words and feelings of fear. When exposure to the priming stimuli was super-quick (40 msec), global mood, rather than a specific emotion, was evoked. These findings... empirically demonstrate (a) that specific emotions can be evoked without conscious awareness of their cause, (b) that unconscious exposure to emotion-eliciting pictures can evoke the specific corresponding emotion and does not evoke other emotions of similar valence, and (c) that unconscious emotion induction develops from elicitation of global affect to elicitation of specific emotions.

Monday, April 28, 2008

For a calm start to your week... some Debussy

Here is a second version (posted April 23, 2007) of the Debussy Reverie I initially put on YouTube Aug 29, 2006). I'm amazed that the first version has had ~90,000 viewings, and the second (made in response to comments on the first version) has had ~8,000.

A longevity-o-meter

Check out the "Vitality Compass" at the Blue Zones Community website. The results of a 2-3 minute quiz are based on a complex, 106-page algorithm developed by Dr. Robert Kane, a physician and a professor at the University of Minnesota School of Public Health. Here is my result (I'm 66 years old). Blue zone years refer to the number of years one has gained or lost given one's current behaviors.:

If you haven't OD'ed on the internet already....

Have a look at this site, which points to "20 websites that can change your life." (with 2 more added by feedback from viewers). Engaging a number of them (especially twitter) would appear to destroy any remnants of time or privacy that your life might contain.

Friday, April 25, 2008

Brain network disruption during aging.

Most work on brain changes with aging has focused on individual regions, especially those in the frontal lobe, which may shrink or lose activity even in the absence of disease. Andrews-Hanna et al. offer an important paper showing how long range interactions between brain regions are compromised with aging. The work looked at neural activity during a task in two large-scale networks that span the brain: the default network, used when we’re worrying, thinking of the past and future, or imagining people in our lives; and the attention network, used when we’re focusing on a specific task, such as word processing or math problems. The brain regions making up these systems were in sync in young people, but much less so, or not at all, in people over 60.

Figure - the younger brain, below, shows more synchronized activity than the older brain, above.

Thursday, April 24, 2008

Brain imaging can predict the mistakes you are about to make.

From Fountain's review of work by Eichele et al.:
...brain patterns start to change about 30 seconds before an error is committed... changes were seen in two brain networks. One, called the default mode region, is normally active when a person is relaxed and at rest. When a person is doing something, like playing the game, this region becomes deactivated...researchers found that in the time leading up to an error, the region became active again — the subject was heading toward a relaxed state...Another network in the right frontal lobe gradually became less active, the researchers found. This is an area in the brain thought to be related to cognitive control, Dr. Eichele said, to keeping “on task.”

...it might be possible someday to develop a warning system — perhaps by monitoring the brain’s electrical activity, which is more practical — that could be used by people doing monotonous or repetitive tasks. Such a system would alert users when they are heading for a harmful or costly, not to mention mindless, mistake.

Positive psychology - a new organization

Some of you might wish to check out the website of the new International Positive Psychology Association (IPPA). It's board includes Martin Seligman, Mihaly Csikszentmihalyi, Tal Ben-Shahar, etc. The organization seeks to promote the science and practice of positive psychology and to facilitate communication and collaboration among researchers and practitioners around the world. A first world congress is planned for June 2009 in Philadelphia.

Wednesday, April 23, 2008

An antidepressant enhances brain plasticity

The title of the article by Vetencourt et al. is "The Antidepressant Fluoxetine Restores Plasticity in the Adult Visual Cortex. " [Fluoxetine hydrochloride, i.e. Prozac, is an antidepressant of the selective serotonin reuptake inhibitor (SSRI) class.] Here is their abstract:
We investigated whether fluoxetine, a widely prescribed medication for treatment of depression, restores neuronal plasticity in the adult visual system of the rat. We found that chronic administration of fluoxetine reinstates ocular dominance plasticity in adulthood and promotes the recovery of visual functions in adult amblyopic animals, as tested electrophysiologically and behaviorally. These effects were accompanied by reduced intracortical inhibition and increased expression of brain-derived neurotrophic factor in the visual cortex. Cortical administration of diazepam prevented the effects induced by fluoxetine, indicating that the reduction of intracortical inhibition promotes visual cortical plasticity in the adult. Our results suggest a potential clinical application for fluoxetine in amblyopia as well as new mechanisms for the therapeutic effects of antidepressants and for the pathophysiology of mood disorders.

Space versus body based number representation

Here is a fascinating bit of work from Brozzoli et al. showing how our touch perception can reveal the dominance of spatial over digital representation of numbers.
We learn counting on our fingers, and the digital representation of numbers we develop is still present in adulthood. Such an anatomy–magnitude association establishes tight functional correspondences between fingers and numbers. However, it has long been known that small-to-large magnitude information is arranged left-to-right along a mental number line. Here, we investigated touch perception to disambiguate whether number representation is embodied on the hand ("1" = thumb; "5" = little finger) or disembodied in the extrapersonal space ("1" = left; "5" = right). We directly contrasted these number representations in two experiments using a single centrally located effector (the foot) and a simple postural manipulation of the hand (palm-up vs. palm-down). We show that visual presentation of a number ("1" or "5") shifts attention cross-modally, modulating the detection of tactile stimuli delivered on the little finger or thumb. With the hand resting palm-down, subjects perform better when reporting tactile stimuli delivered to the little finger after presentation of number "5" than number "1." Crucially, this pattern reverses (better performance after number "1" than "5") when the hand is in a palm-up posture, in which the position of the fingers in external space, but not their relative anatomical position, is reversed. The human brain can thus use either space- or body-based representation of numbers, but in case of competition, the former dominates the latter, showing the stronger role played by the mental number line organization.

Tuesday, April 22, 2008

Testosterone predicts financial profitability

..at least on a stock trading floor in London. Dan Mitchell summarizes the work of Coats and Herbert, published in PNAS. Men with elevated levels of testosterone, the hormone associated with aggression, made more money. When the markets were more volatile, the men showed higher levels of the stress hormone cortisol. There is the minor question of which is cause and which is effect....

Mine is longer than yours....

The last game of the baby boomers: Who wins is not who has the most toys, but who lives longest. Check out this great New Yorker article by Michael Kinsley. And, by the way, you might refer back to my May 2, 2007 post on Gawande's excellent article on aging.

Stirring Dull roots with spring rain... at Twin Valley

I'm back in Madison, WI., at the old stone schoolhouse on Twin Valley road.