Showing posts with label music. Show all posts
Showing posts with label music. Show all posts

Wednesday, January 29, 2020

What music makes us feel - 13 cross cultural categories

From Cowen et al.:
(Be sure to check out their striking visualization of the data. By moving the cursor about the screen you can listen to the different emotional categories of music, each differently color coded).

Significance
Do our subjective experiences when listening to music show evidence of universality? And if so, what is the nature of these experiences? With data-driven methodological and statistical approaches, we examined the feelings evoked by 2,168 music excerpts in the United States and China. We uncovered 13 distinct types of experiences that people across 2 different cultures report in listening to music of different kinds. Categories such as “awe” drive the experience of music more so than broad affective features like valence. However, emotions that scientists have long treated as discrete can be blended together. Our results provide answers to long-standing questions about the nature of the subjective experiences associated with music.
Abstract
What is the nature of the feelings evoked by music? We investigated how people represent the subjective experiences associated with Western and Chinese music and the form in which these representational processes are preserved across different cultural groups. US (n = 1,591) and Chinese (n = 1,258) participants listened to 2,168 music samples and reported on the specific feelings (e.g., “angry,” “dreamy”) or broad affective features (e.g., valence, arousal) that they made individuals feel. Using large-scale statistical tools, we uncovered 13 distinct types of subjective experience associated with music in both cultures. Specific feelings such as “triumphant” were better preserved across the 2 cultures than levels of valence and arousal, contrasting with theoretical claims that valence and arousal are building blocks of subjective experience. This held true even for music selected on the basis of its valence and arousal levels and for traditional Chinese music. Furthermore, the feelings associated with music were found to occupy continuous gradients, contradicting discrete emotion theories. Our findings, visualized within an interactive map (https://www.ocf.berkeley.edu/∼acowen/music.html) reveal a complex, high-dimensional space of subjective experience associated with music in multiple cultures. These findings can inform inquiries ranging from the etiology of affective disorders to the neurological basis of emotion.

Monday, December 23, 2019

Is this what my grandson will be doing in a few years?

My seven year old grandson Sebastian is a performer, taking piano lessons and reminding me a bit of myself when I was doing the same thing at his age. I think the tenuous similarity in our experiences will soon evaporate, especially in a few years if he joins the world of YouTube "Creators." The following YouTube summary of most popular videos of 2019 lets me (the 77 year old retired professor) know I am living on Mars.



Wednesday, August 07, 2019

Feeling pleasure from music - brain correlates of why people differ

From Martínez-Molina et al.:

SIGNIFICANCE
Music is one of the most important sources of pleasure for many people, but at the same time there are important individual differences in the sensitivity to musical reward. Previous studies have revealed the critical involvement of the functional connectivity between perceptual and subcortical brain areas in the enjoyment of music. However, it is unknown whether individual differences in music sensitivity might arise from variability in the structural connectivity among these areas. Here we show that structural connectivity between supratemporal and orbitofrontal cortices, and between orbitofrontal and nucleus accumbens, predict individual differences in sensibility to music reward. These results provide evidence for the critical involvement of the interaction between the subcortical reward system and higher-order cortical areas in music-induced pleasure.
Abstract
People show considerable variability in the degree of pleasure they experience from music. These individual differences in music reward sensitivity are driven by variability in functional connectivity between the nucleus accumbens (NAcc), a key structure of the reward system, and the right superior temporal gyrus (STG). However, it is unknown whether a neuroanatomical basis exists for this variability. We used diffusion tensor imaging and probabilistic tractography to study the relationship between music reward sensitivity and white matter microstructure connecting these two regions via the orbitofrontal cortex (OFC) in 38 healthy human participants (24 females and 14 males). We found that right axial diffusivity (AD) in the STG–OFC connectivity inversely correlated with music reward sensitivity. Additionally, right mean diffusivity and left AD in the NAcc-OFC tract also showed an inverse correlation. Further, AD in this tract also correlated with previously acquired BOLD activity during music listening, but not for a control monetary reward task in the NAcc. Finally, we used mediation analysis to show that AD in the NAcc–OFC tract explains the influence of NAcc activation during a music task on music reward sensitivity. Overall, our results provide further support for the idea that the exchange of information among perceptual, integrative, and reward systems is important for musical pleasure, and that individual differences in the structure of the relevant anatomical connectivity influences the degree to which people are able to derive such pleasure.

Friday, May 31, 2019

After brief music training 8-10 year old kids show less hyperactivity and better inhibitory control.

Fasano et al. show that only three months of orchestral music training improves inhibitory control and reduces hyperactivity in 8-10 year old children. From the Science Magazine summary of Tamela Hines:
Play your notes and nothing extra. Wait during your measures of rest. Watch the conductor and synchronize with your neighbors. Such attention and sensorimotor skills are key to performing music as part of a group, whether orchestral or choral or a marching band. Not everyone, however, has the time and interest to become a professional musician. Fasano et al. tested the effect of a short orchestral training program, spanning 10 sessions over 3 months, on a group of psychologically normal schoolchildren in Italy. Children in this brief program improved on measures of inhibitory control and hyperactivity. The results suggest new, and fun, ways to help children manage their own hyperactive behaviors.

Monday, April 29, 2019

A bit of digital detox - rehearsing a Mendelssohn Piano Trio

I have been fortunate to find in Austin TX two accomplished string players, violinist Andrea Gore and cellist Karen Foster Cason, who join me in sight reading interesting piano trios. We have decided to work up a few of the pieces we like to do for a house concert in late May, - a musical/social occasion of the sort I used to do in the 1860 stone schoolhouse that was the living room of my Twin Valley Road residence in Madison Wisconsin. I thought I would pass on to MindBlog readers a bit of our rehearsal this past Thursday, working on a Mendelssohn piano trio.

The "digital detox" phrase in this post's title is a clip from Jia Tolentino's recent New Yorker Article "What It Takes to Put Your Phone Away." I'm very much in the mood these days to get away from the "invasion of your cognitive landscape" that it describes and that I have permitted by being open to so many digital input streams as I spend a large fraction of my days hovering over screen and keyboard.

I find that the exercise of playing music is an antidote to this malaise, and I want to spend more time doing it. Don't be surprised if MindBlog posts become less frequent. Anyway, here is the 1st movement of the Mendelssohn Piano Trio No. 2 in C Minor, in a video recording done with my iPhone XS Max with a Shure condenser microphone plugged into its USB port:



Monday, March 04, 2019

Our emotional reward from music is modulated by dopamine.

Ferreri et al. present evidence that enhancing or inhibiting dopamine signaling using levodopa or risperidone modulates the pleasure experienced while listening to music:

Significance
In everyday life humans regularly seek participation in highly complex and pleasurable experiences such as music listening, singing, or playing, that do not seem to have any specific survival advantage. The question addressed here is to what extent dopaminergic transmission plays a direct role in the reward experience (both motivational and hedonic) induced by music. We report that pharmacological manipulation of dopamine modulates musical responses in both positive and negative directions, thus showing that dopamine causally mediates musical reward experience.
Abstract
Understanding how the brain translates a structured sequence of sounds, such as music, into a pleasant and rewarding experience is a fascinating question which may be crucial to better understand the processing of abstract rewards in humans. Previous neuroimaging findings point to a challenging role of the dopaminergic system in music-evoked pleasure. However, there is a lack of direct evidence showing that dopamine function is causally related to the pleasure we experience from music. We addressed this problem through a double blind within-subject pharmacological design in which we directly manipulated dopaminergic synaptic availability while healthy participants (n = 27) were engaged in music listening. We orally administrated to each participant a dopamine precursor (levodopa), a dopamine antagonist (risperidone), and a placebo (lactose) in three different sessions. We demonstrate that levodopa and risperidone led to opposite effects in measures of musical pleasure and motivation: while the dopamine precursor levodopa, compared with placebo, increased the hedonic experience and music-related motivational responses, risperidone led to a reduction of both. This study shows a causal role of dopamine in musical pleasure and indicates that dopaminergic transmission might play different or additive roles than the ones postulated in affective processing so far, particularly in abstract cognitive activities.
From a review piece by Goupil and Aucouturier in the same PNAS issue:
This result is the latest development in an already remarkable series of studies by the groups of Robert Zatorre and Antoni Rodriguez-Fornells on the implication of the reward system in musical emotions. In their seminal 2001 study, Blood and Zatorre used the PET imaging technique to show that episodes of peak emotional responses to music (or musical “chills”) were associated with increased blood flow in the ventral striatum, the amygdala, and other brain regions associated with emotion and reward. In a 2011 follow-up study, Salimpoor et al. then relied on [11C]raclopride PET—a technique that allows estimating dopamine release in cerebral tissue—to show that peak emotional arousal during music listening is associated with the simultaneous release of dopamine in the bilateral dorsal and ventral striatum. With the increasing spatial resolution of fMRI techniques, in 2013 the same team was able to narrow in on a specific dopaminoceptive subregion of the ventral striatum, the nucleus accumbens (NAcc). Specifically, they found that NAcc activity during music listening is associated with how much money participants are subsequently willing to pay for the songs that they found pleasurable. In a final salvo to establish not only the correlational but also the causal implication of dopamine in musical pleasure, the authors have turned to directly manipulating dopaminergic signaling in the striatum, first by applying excitatory and inhibitory transcranial magnetic stimulation over their participants’ left dorsolateral prefrontal cortex, a region known to modulate striatal function, and finally, in the current study, by administrating pharmaceutical agents able to alter dopamine synaptic availability, both of which influenced perceived pleasure, physiological measures of arousal, and the monetary value assigned to music in the predicted direction.
The finding that music constitutes a privileged stimulus able to activate phylogenetically ancient systems involved in valuation and motivation may very well be interpreted as an indication that the human brain contains an adaptive neural specialization for processing music as a rewarding stimulus. As such, one might wonder whether the crucial question for future research is not so much whether music is rewarding, but rather why.

Thursday, February 14, 2019

The science of sway in musical ensembles.

I'm passing on this fascinating article that the violinist in my piano trio sent to her musician colleagues. Trainor's group at McMaster University documents how body sway reflects joint emotional expression in music ensemble performance.
Joint action is essential in daily life, as humans often must coordinate with others to accomplish shared goals. Previous studies have mainly focused on sensorimotor aspects of joint action, with measurements reflecting event-to-event precision of interpersonal sensorimotor coordination (e.g., tapping). However, while emotional factors are often closely tied to joint actions, they are rarely studied, as event-to-event measurements are insufficient to capture higher-order aspects of joint action such as emotional expression. To quantify joint emotional expression, we used motion capture to simultaneously measure the body sway of each musician in a trio (piano, violin, cello) during performances. Excerpts were performed with or without emotional expression. Granger causality was used to analyze body sway movement time series amongst musicians, which reflects information flow. Results showed that the total Granger-coupling of body sway in the ensemble was higher when performing pieces with emotional expression than without. Granger-coupling further correlated with the emotional intensity as rated by both the ensemble members themselves and by musician judges, based on the audio recordings alone. Together, our findings suggest that Granger-coupling of co-actors’ body sways reflects joint emotional expression in a music ensemble, and thus provide a novel approach to studying joint emotional expression.
Note: here is the authors' description of Granger causality:
Granger causality is a statistical estimation of the degree to which one time series is predicted by the history of another time series, over and above prediction by its own history. The larger the value of Granger causality, the better the prediction, and the more information that is flowing from one time series to another. Previous studies have shown that Granger causalities among performers’ motions in a music ensemble reflect leadership dynamics and thus information flow31,36,43, which are higher-order aspects of joint action.

Tuesday, December 25, 2018

A Seasonal Offering...

The cellist in a piano trio that I am playing with invited me (as a sight reading pianist who is always on the prowl for string players) to attend a gathering last Friday of Austin TX string players. They meet every year to sight read Christmas music. I pulled out my iPhone and recorded a small clip of the group that collected on the local recital hall stage to play the Corelli Christmas concerto.

 

Thursday, October 25, 2018

Musicians' enhanced auditory perception depends on the instrument they play.

Professionally trained musicians show enhanced auditory perception of music. Krishnan et al. show that this expertise is modulated by the instrument played by the musician:
Studies of classical musicians have demonstrated that expertise modulates neural responses during auditory perception. However, it remains unclear whether such expertise-dependent plasticity is modulated by the instrument that a musician plays. To examine whether the recruitment of sensorimotor regions during music perception is modulated by instrument-specific experience, we studied nonclassical musicians—beatboxers, who predominantly use their vocal apparatus to produce sound, and guitarists, who use their hands. We contrast fMRI activity in 20 beatboxers, 20 guitarists, and 20 nonmusicians as they listen to novel beatboxing and guitar pieces. All musicians show enhanced activity in sensorimotor regions (IFG, IPC, and SMA), but only when listening to the musical instrument they can play. Using independent component analysis, we find expertise-selective enhancement in sensorimotor networks, which are distinct from changes in attentional networks. These findings suggest that long-term sensorimotor experience facilitates access to the posterodorsal “how” pathway during auditory processing.

Wednesday, August 22, 2018

Brain tracking of musical beat is enhanced by low frequency sounds.

Lenc et al. find that that brain activity at the frequency of the perceived beat is selectively enhanced compared with other frequencies in the electroencephalogram (EEG) spectrum when rhythms are conveyed by bass sounds, explaining why across cultures bass instruments are used to induce people to dance to periodic pulse-like beats.
Music makes us move, and using bass instruments to build the rhythmic foundations of music is especially effective at inducing people to dance to periodic pulse-like beats. Here, we show that this culturally widespread practice may exploit a neurophysiological mechanism whereby low-frequency sounds shape the neural representations of rhythmic input by boosting selective locking to the beat. Cortical activity was captured using electroencephalography (EEG) while participants listened to a regular rhythm or to a relatively complex syncopated rhythm conveyed either by low tones (130 Hz) or high tones (1236.8 Hz). We found that cortical activity at the frequency of the perceived beat is selectively enhanced compared with other frequencies in the EEG spectrum when rhythms are conveyed by bass sounds. This effect is unlikely to arise from early cochlear processes, as revealed by auditory physiological modeling, and was particularly pronounced for the complex rhythm requiring endogenous generation of the beat. The effect is likewise not attributable to differences in perceived loudness between low and high tones, as a control experiment manipulating sound intensity alone did not yield similar results. Finally, the privileged role of bass sounds is contingent on allocation of attentional resources to the temporal properties of the stimulus, as revealed by a further control experiment examining the role of a behavioral task. Together, our results provide a neurobiological basis for the convention of using bass instruments to carry the rhythmic foundations of music and to drive people to move to the beat.

Tuesday, August 14, 2018

Rediscovering ancient greek music.

I want to point to a fascinating article by Armand D’Angour at Oxford University, on efforts to reconstruct what music sounded like in ancient Greece. The work is also described in this YouTube video:

Monday, July 30, 2018

Piano training enhances speech perception.

Fascinating work from an international collaboration of Desimone at M.I.T., Nan at Beijing Normal Univ., and others:

Significance
Musical training is beneficial to speech processing, but this transfer’s underlying brain mechanisms are unclear. Using pseudorandomized group assignments with 74 4- to 5-year-old Mandarin-speaking children, we showed that, relative to an active control group which underwent reading training and a no-contact control group, piano training uniquely enhanced cortical responses to pitch changes in music and speech (as lexical tones). These neural enhancements further generalized to early literacy skills: Compared with the controls, the piano-training group also improved behaviorally in auditory word discrimination, which was correlated with their enhanced neural sensitivities to musical pitch changes. Piano training thus improves children’s common sound processing, facilitating certain aspects of language development as much as, if not more than, reading instruction.
Abstract
Musical training confers advantages in speech-sound processing, which could play an important role in early childhood education. To understand the mechanisms of this effect, we used event-related potential and behavioral measures in a longitudinal design. Seventy-four Mandarin-speaking children aged 4–5 y old were pseudorandomly assigned to piano training, reading training, or a no-contact control group. Six months of piano training improved behavioral auditory word discrimination in general as well as word discrimination based on vowels compared with the controls. The reading group yielded similar trends. However, the piano group demonstrated unique advantages over the reading and control groups in consonant-based word discrimination and in enhanced positive mismatch responses (pMMRs) to lexical tone and musical pitch changes. The improved word discrimination based on consonants correlated with the enhancements in musical pitch pMMRs among the children in the piano group. In contrast, all three groups improved equally on general cognitive measures, including tests of IQ, working memory, and attention. The results suggest strengthened common sound processing across domains as an important mechanism underlying the benefits of musical training on language processing. In addition, although we failed to find far-transfer effects of musical training to general cognition, the near-transfer effects to speech perception establish the potential for musical training to help children improve their language skills. Piano training was not inferior to reading training on direct tests of language function, and it even seemed superior to reading training in enhancing consonant discrimination.

Friday, July 06, 2018

Brain imaging predicts who will be a good musical performer.

Fascinating observations from Zatorre's group:

Significance
In sophisticated auditory–motor learning such as musical instrument learning, little is understood about how brain plasticity develops over time and how the related individual variability is reflected in the neural architecture. In a longitudinal fMRI training study on cello learning, we reveal the integrative function of the dorsal cortical stream in auditory–motor information processing, which comes online quickly during learning. Additionally, our data show that better performers optimize the recruitment of regions involved in auditory encoding and motor control and reveal the critical role of the pre-supplementary motor area and its interaction with auditory areas as predictors of musical proficiency. The present study provides unprecedented understanding of the neural substrates of individual learning variability and therefore has implications for pedagogy and rehabilitation.
Abstract
The auditory and motor neural systems are closely intertwined, enabling people to carry out tasks such as playing a musical instrument whose mapping between action and sound is extremely sophisticated. While the dorsal auditory stream has been shown to mediate these audio–motor transformations, little is known about how such mapping emerges with training. Here, we use longitudinal training on a cello as a model for brain plasticity during the acquisition of specific complex skills, including continuous and many-to-one audio–motor mapping, and we investigate individual differences in learning. We trained participants with no musical background to play on a specially designed MRI-compatible cello and scanned them before and after 1 and 4 wk of training. Activation of the auditory-to-motor dorsal cortical stream emerged rapidly during the training and was similarly activated during passive listening and cello performance of trained melodies. This network activation was independent of performance accuracy and therefore appears to be a prerequisite of music playing. In contrast, greater recruitment of regions involved in auditory encoding and motor control over the training was related to better musical proficiency. Additionally, pre-supplementary motor area activity and its connectivity with the auditory cortex during passive listening before training was predictive of final training success, revealing the integrative function of this network in auditory–motor information processing. Together, these results clarify the critical role of the dorsal stream and its interaction with auditory areas in complex audio–motor learning.

Thursday, June 21, 2018

Old Italian violins imitate the human voice.

A fascinating study from Tai et al. (open source):

Significance
Amati and Stradivari violins are highly appreciated by musicians and collectors, but the objective understanding of their acoustic qualities is still lacking. By applying speech analysis techniques, we found early Italian violins to emulate the vocal tract resonances of male singers, comparable to basses or baritones. Stradivari pushed these resonance peaks higher to resemble the shorter vocal tract lengths of tenors or altos. Stradivari violins also exhibit vowel qualities that correspond to lower tongue height and backness. These properties may explain the characteristic brilliance of Stradivari violins. The ideal for violin tone in the Baroque era was to imitate the human voice, and we found that Cremonese violins are capable of producing the formant features of human singers.
Abstract
The shape and design of the modern violin are largely influenced by two makers from Cremona, Italy: The instrument was invented by Andrea Amati and then improved by Antonio Stradivari. Although the construction methods of Amati and Stradivari have been carefully examined, the underlying acoustic qualities which contribute to their popularity are little understood. According to Geminiani, a Baroque violinist, the ideal violin tone should “rival the most perfect human voice.” To investigate whether Amati and Stradivari violins produce voice-like features, we recorded the scales of 15 antique Italian violins as well as male and female singers. The frequency response curves are similar between the Andrea Amati violin and human singers, up to ∼4.2 kHz. By linear predictive coding analyses, the first two formants of the Amati exhibit vowel-like qualities (F1/F2 = 503/1,583 Hz), mapping to the central region on the vowel diagram. Its third and fourth formants (F3/F4 = 2,602/3,731 Hz) resemble those produced by male singers. Using F1 to F4 values to estimate the corresponding vocal tract length, we observed that antique Italian violins generally resemble basses/baritones, but Stradivari violins are closer to tenors/altos. Furthermore, the vowel qualities of Stradivari violins show reduced backness and height. The unique formant properties displayed by Stradivari violins may represent the acoustic correlate of their distinctive brilliance perceived by musicians. Our data demonstrate that the pioneering designs of Cremonese violins exhibit voice-like qualities in their acoustic output.

Monday, April 30, 2018

A workshop on music and the brain.

I want to point to this open access article describing an NIH/Kennedy Center workshop on music and the brain, hosted by National Institutes of Health (NIH) Director Francis Collins, soprano Renée Fleming, and Kennedy Center (KC) President Deborah Rutter. Descriptions of the various workshops, in addition to waffling and hot air, include some useful links to basic research articles on music and the brain. Here is a clip from the introduction:
The workshop was organized around the three life stages—childhood, adulthood, and aging. In each session, a panel of 25 experts (listed in Table 1) discussed recent breakthroughs in research and their potential therapeutic applications. Over the course of a day and a half, the panelists recommended basic and applied research that will: (1) increase our understanding of how the brain processes music; (2) lead to scientifically based strategies to enhance normal brain development and function; and (3) result in evidence-based music interventions for brain diseases. In the sections that follow, we will review the discussions from the workshop and highlight the major recommendations that emerged. Finally, we will discuss how funding agencies, scientists, clinicians, and supporters of the arts can work together to catalyze further progress.
The article is worth a read for those (like myself) interested in music and the brain. The workshop on music and the adult brain discusses the effect of musical training on adult brain structure and function. Here are the topics:
“Building”: Music and the Child’s Brain
Music as a Therapeutic Intervention in Children
“Engaging”: Music and the Adult Brain
Music as a Therapeutic Intervention in Adults: Overlapping Circuits Suggest Potential Mechanisms
“Sustaining”: Music and the Aging Brain
Music as a Tool for Restoring Function in the Aging Brain

Wednesday, February 14, 2018

A Valentine's Day musical offering - Respighi's Intermezzo Serenata

A piano transcription by Respighi of the Intermezzo Serenata from his comic opera Re Enzo.  Making a recording of a piano piece I like motivates me to learn it a bit more thoroughly and is necessary if I plan to play it for one of our house social/musical occasions.  I never manage a playing without some minor error,  so from the four takes I did yesterday I pass on with one with the smallest number of glitches. Readers who are Apple groupies might note the Apple watch camera app displaying the scene being recorded by the iPhone X camera and the shutter button on the watch starting and stopping the recording.





Thursday, December 14, 2017

Debussy La plus que lente - a first musical offering from Austin Texas.

This is a personal post, a musical offering of the sort I have done on MindBlog in previous years. The Steinway B that I have used since 2002 recently moved with me from Fort Lauderdale, Florida to Austin, Texas, not to the family house I moved back into, but to the larger living room of my son's home which can manage the kind of musical socials I have given for many years.  Techie MindBlog readers might be interested in my discovery that the video camera on my iPhone X is better than the Canon video camera I had been using, and that a small USB Zoom iQ6 condenser microphone attached to its Lightning connector gives audio quality comparable to the much larger C1 Studio condenser microphone whose output had to be tediously synchronized with video from the Canon camera stripped of its inferior audio sound track.





Friday, August 04, 2017

A positive mood from listening to music broadens our auditory attention.

An addition to the literature from Putkinen et al. expanding on previous findings that positive mood broadens visual attention:
Previous studies indicate that positive mood broadens the scope of visual attention, which can manifest as heightened distractibility. We used event-related potentials (ERP) to investigate whether music-induced positive mood has comparable effects on selective attention in the auditory domain. Subjects listened to experimenter-selected happy, neutral or sad instrumental music and afterwards participated in a dichotic listening task. Distractor sounds in the unattended channel elicited responses related to early sound encoding (N1/MMN) and bottom-up attention capture (P3a) while target sounds in the attended channel elicited a response related to top-down-controlled processing of task-relevant stimuli (P3b). For the subjects in a happy mood, the N1/MMN responses to the distractor sounds were enlarged while the P3b elicited by the target sounds was diminished. Behaviorally, these subjects tended to show heightened error rates on target trials following the distractor sounds. Thus, the ERP and behavioral results indicate that the subjects in a happy mood allocated their attentional resources more diffusely across the attended and the to-be-ignored channels. Therefore, the current study extends previous research on the effects of mood on visual attention and indicates that even unfamiliar instrumental music can broaden the scope of auditory attention via its effects on mood.

Monday, June 26, 2017

Why it is impossible to tune a piano.

Here is a 'random curious stuff' item, per the MindBlog description above.  I want to pass on this great explanation of why physics requires that piano notes have to be slightly out of tune, except for the octave, resulting in the equal temperament tuning system most piano tuners use. I suggest you expand the video to full screen, and pause it occasionally to catch up with its rapid pace.
 

Wednesday, May 31, 2017

Listener evaluations of new and old Italian violins

From Fritz et al.:
Old Italian violins are routinely credited with playing qualities supposedly unobtainable in new instruments. These qualities include the ability to project their sound more effectively in a concert hall—despite seeming relatively quiet under the ear of the player—compared with new violins. Although researchers have long tried to explain the “mystery” of Stradivari’s sound, it is only recently that studies have addressed the fundamental assumption of tonal superiority. Results from two studies show that, under blind conditions, experienced violinists tend to prefer playing new violins over Old Italians. Moreover, they are unable to tell new from old at better than chance levels. This study explores the relative merits of Stradivari and new violins from the perspective of listeners in a hall. Projection and preference are taken as the two broadest criteria by which listeners might meaningfully compare violins. Which violins are heard better, and which are preferred? In two separate experiments, three new violins were compared with three by Stradivari. Projection was tested both with and without orchestral accompaniment. Projection and preference were judged simultaneously by dividing listeners into two groups. Results are unambiguous. The new violins projected better than the Stradivaris whether tested with orchestra or without, the new violins were generally preferred by the listeners, and the listeners could not reliably distinguish new from old. The single best-projecting violin was considered the loudest under the ear by players, and on average, violins that were quieter under the ear were found to project less well.