Increasing life expectancy is causing the prevalence of age-related diseases to rise, and there is an urgent need for new strategies to improve health at older ages. Reduced activity of insulin/insulin-like growth factor signaling (IIS) and mechanistic target of rapamycin (mTOR) nutrient-sensing signaling network can extend lifespan and improve health during aging in diverse organisms. However, the extensive feedback in this network and adverse side effects of inhibition imply that simultaneous targeting of specific effectors in the network may most effectively combat the effects of aging. We show that the mitogen-activated protein kinase kinase (MEK) inhibitor trametinib, the mTOR complex 1 (mTORC1) inhibitor rapamycin, and the glycogen synthase kinase-3 (GSK-3) inhibitor lithium act additively to increase longevity in Drosophila. Remarkably, the triple drug combination increased lifespan by 48%. Furthermore, the combination of lithium with rapamycin cancelled the latter’s effects on lipid metabolism. In conclusion, a polypharmacology approach of combining established, prolongevity drug inhibitors of specific nodes may be the most effective way to target the nutrient-sensing network to improve late-life health.
This blog reports new ideas and work on mind, brain, behavior, psychology, and politics - as well as random curious stuff. (Try the Dynamic Views at top of right column.)
Monday, November 04, 2019
A triple drug combination increases lifespan by 48%
In Drosophila flies, to be sure, but the nutrient sensing pathways that are the target of the drugs are common to all animals. Here is the abstract from open source article by Castillo-!uan et al.:
Blog Categories:
aging
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment