Wednesday, May 15, 2024

Collective behavior from surprise minimization

A fascinating model for collective behavior from Heins et al.:

Significance

We introduce a model of collective behavior, proposing that individual members within a group, such as a school of fish or a flock of birds, act to minimize surprise. This active inference approach naturally generates well-known collective phenomena such as cohesion and directed movement without explicit behavioral rules. Our model reveals intricate relationships between individual beliefs and group properties, demonstrating that beliefs about uncertainty can shape collective decision-making accuracy. As agents update their generative model in real time, groups become more sensitive to external perturbations and more robust in encoding information. Our work provides fresh insights into understanding collective dynamics and could inspire strategies in the study of animal behavior, swarm robotics, and distributed systems.

Abstract

Collective motion is ubiquitous in nature; groups of animals, such as fish, birds, and ungulates appear to move as a whole, exhibiting a rich behavioral repertoire that ranges from directed movement to milling to disordered swarming. Typically, such macroscopic patterns arise from decentralized, local interactions among constituent components (e.g., individual fish in a school). Preeminent models of this process describe individuals as self-propelled particles, subject to self-generated motion and “social forces” such as short-range repulsion and long-range attraction or alignment. However, organisms are not particles; they are probabilistic decision-makers. Here, we introduce an approach to modeling collective behavior based on active inference. This cognitive framework casts behavior as the consequence of a single imperative: to minimize surprise. We demonstrate that many empirically observed collective phenomena, including cohesion, milling, and directed motion, emerge naturally when considering behavior as driven by active Bayesian inference—without explicitly building behavioral rules or goals into individual agents. Furthermore, we show that active inference can recover and generalize the classical notion of social forces as agents attempt to suppress prediction errors that conflict with their expectations. By exploring the parameter space of the belief-based model, we reveal nontrivial relationships between the individual beliefs and group properties like polarization and the tendency to visit different collective states. We also explore how individual beliefs about uncertainty determine collective decision-making accuracy. Finally, we show how agents can update their generative model over time, resulting in groups that are collectively more sensitive to external fluctuations and encode information more robustly.

No comments:

Post a Comment