Friday, April 07, 2023

Our heartbeat shapes our perception of time (and a comparison of how ChatGPT and Google Bard condense an account of work showing this)...

Ellen Barry has done a review of work by Sadeghi et al, as well as others, on how heart-brain interactions influence our perception of time. I asked ChatGPT to do a 200 word summary of her article of 795 words. It generated 237 words (below), to which I made a small addition. (I feels like I'm using the language generating mental equivalent of a physical prosthesis.) That is followed by Google Bard's response, very impressive. Microsoft's Bing was unable to deal with the task.
A recent study by psychologists at Cornell University has suggested that our heartbeats may play an important role in shaping our perception of time. The study, published in the journal Psychophysiology, found that some distortions in time perception could be driven by variable heartbeat length. The researchers fitted undergraduates with electrocardiograms to measure the length of each heartbeat and asked them to estimate the length of brief audio tones. After longer heartbeat intervals, subjects tended to perceive the tone as longer, while shorter intervals led to shorter perception. Additionally, the subjects’ heartbeat intervals lengthened after each tone, and a lower heart rate appeared to assist with perception. According to Saeedeh Sadeghi, the study’s lead author, “there is no single part of the brain or body that keeps time — it’s all a network. The brain controls the heart, and the heart, in turn, impacts the brain.”
The study addresses the mechanisms behind how we perceive the passage of milliseconds and may help us manage trauma, in which instantaneous experiences are remembered as drawn out. Intense emotional engagement speeds up perception of time, while depression slows it down. Research into perception of time has traditionally focused on different areas of the brain, but there is now greater appreciation that cognitive functions are intimately linked to the control of the body. Time is closely related to metabolic needs, and the body tries to determine how much energy it has available in the moment, which may affect how we perceive the passage of time.
Here is the response from Google Bard, more impressive, I think:
Sure, here is a 200-word summary [note - it's actually 313 words] of the text:
A recent study published in the journal Psychophysiology suggests that our heartbeat may play an important role in our perception of time. The study found that participants who had longer heartbeat intervals tended to perceive brief audio tones as longer, while participants who had shorter heartbeat intervals tended to perceive the tones as shorter. This suggests that our heart rate may influence how we experience the passage of time.
The study's lead author, Saeedeh Sadeghi, said that the findings provide more evidence that "there is no single part of the brain or body that keeps time — it's all a network." She added that the study "could have implications for understanding how people with certain conditions, such as anxiety or depression, experience time differently."
The study's findings are in line with previous research that has shown that our heart rate can affect our cognitive function. For example, one study found that people who were asked to perform a task while listening to their heartbeat performed worse on the task than those who were not listening to their heartbeat. This suggests that our heart rate may distract us and make it more difficult to focus on tasks.
The study's findings also have implications for our understanding of how we experience time in different situations. For example, the study suggests that time may seem to pass more slowly when we are stressed or anxious, as our heart rate tends to increase in these situations. Conversely, time may seem to pass more quickly when we are relaxed or bored, as our heart rate tends to decrease in these situations.
Overall, the study provides new insights into the complex relationship between our heart rate and our perception of time. The findings could have implications for understanding how people with certain conditions experience time differently, as well as for our understanding of how we experience time in different situations.

No comments:

Post a Comment