Showing posts sorted by date for query neuroplasticity. Sort by relevance Show all posts
Showing posts sorted by date for query neuroplasticity. Sort by relevance Show all posts

Wednesday, February 03, 2010

Music training induces plasticity in our hippocampus

From Herdener et al. :
Training can change the functional and structural organization of the brain, and animal models demonstrate that the hippocampus formation is particularly susceptible to training-related neuroplasticity. In humans, however, direct evidence for functional plasticity of the adult hippocampus induced by training is still missing. Here, we used musicians' brains as a model to test for plastic capabilities of the adult human hippocampus. By using functional magnetic resonance imaging optimized for the investigation of auditory processing, we examined brain responses induced by temporal novelty in otherwise isochronous sound patterns in musicians and musical laypersons, since the hippocampus has been suggested previously to be crucially involved in various forms of novelty detection. In the first cross-sectional experiment, we identified enhanced neural responses to temporal novelty in the anterior left hippocampus of professional musicians, pointing to expertise-related differences in hippocampal processing. In the second experiment, we evaluated neural responses to acoustic temporal novelty in a longitudinal approach to disentangle training-related changes from predispositional factors. For this purpose, we examined an independent sample of music academy students before and after two semesters of intensive aural skills training. After this training period, hippocampal responses to temporal novelty in sounds were enhanced in musical students, and statistical interaction analysis of brain activity changes over time suggests training rather than predisposition effects. Thus, our results provide direct evidence for functional changes of the adult hippocampus in humans related to musical training.

Monday, October 12, 2009

Gene therapy restores vision to color-blind monkeys

An Editor's summary in the Oct. 8 Nature describes a remarkable finding, and Shapley discusses the work described in the paper by Mancuso et al. :
It is often assumed that critical periods exist for the development of vision and other neural capabilities and that they end prior to adolescence. For example, it might be expected that gene therapy in adults with congenital vision disorders would be impossible. But experiments in adult spider monkeys who are normally red–green colour blind show that it is possible to add a third photopigment (human opsin) into some of their retinal cells by gene therapy. The monkeys acquire a new dimension of colour vision as a result. Not only does this suggest a possible therapy for a common congenital visual defect in humans (clinical trials are now under way), but also it demonstrates the extreme neuroplasticity of visual processing and points to possible routes by which trichromatic vision evolved.

Thursday, January 10, 2008

Compensatory neural plasticity in aging human brains.

Recent imaging studies have shown that seniors exhibit stronger brain activation than younger controls during the execution of various motor tasks. Old subjects activate the same regions as their younger counterparts, but to a larger extent, and they also activate additional regions that are not observed in the young subjects.

Heuninckx et al. examine the underlying neural mechanisms of this "overactivation" by determining whether it reflects compensation for various neural/behavioral deficits (e.g., neurodegeneration, attentional problems, reduction in sensory function, etc.) or whether it is due to de-differentiation (a generalized nonfunctional spread of activity attributable to deficits in neurotransmission, which in turn causes a decrease in the signal-to-noise ratio in neural firing and a loss of neural specialization). They compared brain activity in 24 older adults and 11 young controls during the performance of rhythmical hand–foot coordination tasks, whereby both limbs moved either in the same (iso-directional) or in the opposite (non-isodirectional, NONISODIR in the figure below) direction. Previous behavioral work had shown convincingly that the non-isodirectional pattern is more difficult and is produced with lower accuracy and stability than the iso-directional pattern. Activation in dedicated brain regions was correlated with motor performance in the elderly. According to the compensation hypothesis, the underlying rationale was that the over-activation would be larger in good than in poor motor performers, with the effect being more pronounced in more (non-isodirectional) than less (iso-directional) demanding coordination tasks. Conversely, the de-differentiation hypothesis assumed overactivation to be larger in poor than in successful motor performers because of nonfunctional neural irradiation. Thus, positive correlations between brain activation and motor performance were considered to reflect compensation, and negative correlations were considered to reflect de-differentiation.

They found that that coordination resulted in activation of classical motor coordination regions and also higher-level sensorimotor and frontal regions in the elderly. A positive correlation between activation level in these latter regions and motor performance was observed. This performance enhancing additional recruitment is consistent with the compensation hypothesis and reflects neuroplasticity at the systems level in the aging brain.


Figure: (Click to enlarge). Statistical parametric maps representing significantly larger activation in the old compared with the young group during the NONISODIR coordination mode, resulting from the following contrast: (NONISODIR – rest)old versus (NONISODIR – rest)young. L, Left hemisphere; R, right hemisphere. White arrows indicate brain regions that exhibit a significant correlation between brain activity level and coordination performance, as identified by a whole-brain multiple regression analysis. The graphics display each subject's BOLD response with respect to the within-cluster peak activation as a function of the inverse of the phase error (1/AE), with the younger subjects in blue and the older subjects in red.

Monday, September 17, 2007

Do you have absolute pitch?

Curious that I came across this article, just after a post on Pavoratti's High C. From Athos et al.
Absolute pitch (AP) is the rare ability to identify the pitch of a tone without the aid of a reference tone. Understanding both the nature and genesis of AP can provide insights into neuroplasticity in the auditory system. We explored factors that may influence the accuracy of pitch perception in AP subjects both during the development of the trait and in later age. We used a Web-based survey and a pitch-labeling test to collect perceptual data from 2,213 individuals, 981 (44%) of whom proved to have extraordinary pitch-naming ability. The bimodal distribution in pitch-naming ability signifies AP as a distinct perceptual trait, with possible implications for its genetic basis. The wealth of these data has allowed us to uncover unsuspected note-naming irregularities suggestive of a "perceptual magnet" centered at the note "A." In addition, we document a gradual decline in pitch-naming accuracy with age, characterized by a perceptual shift in the "sharp" direction. These findings speak both to the process of acquisition of AP and to its stability.
From a commentary by Drayna in the same issue of PNAS:
Absolute pitch is an especially tantalizing trait for genetic analysis. It has an onset early in life, it occurs equally in males and females, it is highly heritable, it is rare in the population, and it appears to be nonsyndromic, that is, unassociated with other conditions. All of these features bode well for the prospects of gene finding. However, unlike most inherited neurological conditions for which affected individuals present themselves to a medical specialist, AP individuals and families have not been easily ascertained. The demonstration by Athos et al. that a web site can be an effective tool for identifying, testing, and recruiting AP subjects is an important development. The identification of the genetic variation that leads to AP is likely to tell us much about a part of the auditory system that is currently obscure, and the results of Athos et al. are indeed encouraging in this quest.

Thursday, August 23, 2007

Two Books on Brain Plasticity

I'm not sure why I haven't mentioned these books, both appearing earlier this year. In "Train Your Mind, Change Your Brain: How a New Science Reveals Our Extraordinary Potential to Transform Ourselves" Wall Street Journal science writer Sharon Begley gives an account that derives largely from a 2004 meeting at MIT in Cambridge Mass (which I also enjoyed attending) in which the Dali Lama, Buddhist monks, and prominent neuroscientists exchanged insight and information. The book mentions work with meditation and mind training, as well as new approaches in treating dyslexia, depression, mental deterioration on aging, etc., but it is not a how-to manual.

The book by Norman Doidge, "The Brain That Changes Itself: Stories of Personal Triumph from the Frontiers of Brain Science" gives stories of numerous examples of neuroplasticity and rehabilitation among his own patients, as well as relating other case studies of recovery and conversations with neuroscientists.

Thursday, May 03, 2007

Train Your Brain

Meghan O'Rourke on the new mania for neuroplasticity.
Neuroplasticity certainly has capacious ramifications, but you could be forgiven for thinking that the mania for harnessing its supposed anti-aging benefits is just our latest form of magical thinking, invoked by baby boomers who've turned away from fussing over their children's brains to ward off their own eventual decline.

...the idea that a little mindful meditation could calm down the forgetful, buzzing frenzy of our brains is still an appealing one. Even if the science is less than solid, maybe the placebo effect will kick in; and in any case, my brain seems to enjoy its crossword-puzzle respites and its Sudoku vacations, the way my muscles enjoy a massage. Or so my mind is telling me. Seven-letter word for "memory loss," anyone?