Vision in the fovea, the center of the visual field, is much more accurate and detailed than vision in the periphery. This is not in line with the rich phenomenology of peripheral vision. Here, we investigated a visual illusion that shows that detailed peripheral visual experience is partially based on a reconstruction of reality. Participants fixated on the center of a visual display in which central stimuli differed from peripheral stimuli. Over time, participants perceived that the peripheral stimuli changed to match the central stimuli, so that the display seemed uniform. We showed that a wide range of visual features, including shape, orientation, motion, luminance, pattern, and identity, are susceptible to this uniformity illusion. We argue that the uniformity illusion is the result of a reconstruction of sparse visual information (from the periphery) based on more readily available detailed visual information (from the fovea), which gives rise to a rich, but illusory, experience of peripheral vision.
This blog reports new ideas and work on mind, brain, behavior, psychology, and politics - as well as random curious stuff. (Try the Dynamic Views at top of right column.)
Monday, January 30, 2017
The uniformity illusion.
Otten et al. investigate a visual illusion in which the accurate and detailed vision in the center of our visual field, accomplished by the fovea, influences our perception of peripheral stimuli, making them seem more similar to the center. The open source article contains several nice examples of this illusion.
Friday, January 27, 2017
Regression to the mean - Why we would all be better off if we ignored Trump’s tweets
O’Donnell’s answer to the annual edge.org question "What scientific term or concept ought to be more widely known?":
My candidate is an old, simple, and powerful one: the law of regression to the mean. It’s a concept from the discipline of statistics, but in real life it means that anomalies are anomalies, coincidences happen (all the time, with stunning frequency), and the main thing they tell us is that the next thing to happen is very likely to be a lot more boring, ordinary, and predictable. Put in the simplest human terms, it teaches us not to be so excitable, not to be so worried, not to be so excited: Life really will be, for the most part, boring and predictable.
The ancient and late antique intellectuals whom I spend my life studying wouldn’t talk so much about miracles and portents if they could calm down and think about the numbers. The baseball fans thrilled to see the guy on a hitting streak come to the plate wouldn’t be so disappointed when he struck out. Even people reading election returns would see much more normality lurking inside shocking results than television reporters can admit.
Heeding the law of regression to the mean would help us slow down, calm down, pay attention to the long term and the big picture, and react with a more strategic patience to crises large and small. We’d all be better off.
Thursday, January 26, 2017
Smartphone reprogramming of our brains?
Nicolelis makes some good points as he adds to the genre of literature that predicts a diminution of our brain power caused by dependence on the latest technological advance (abacus, slide rule, electronic calculator, computer, etc.). Here is his statement of alarm:
Could our constant reciprocal interaction with digital logic (through laptops, tablets, smartphones, all the way to highly immersive virtual reality environments), particularly when it leads to powerfully hedonic experiences, result in the slow compromise or even elimination of some of the behaviours and cognitive aptitudes that represent the most exquisite and cherished attributes of the human condition? Attributes such as our multifaceted social skills, empathy, linguistic semantics, aesthetic sense, artistic expression, intuition, creativity and the ability to improvise solutions to novel contingencies, to name just a few. In other words, could opting for the fast lane of the never-ending highway to full digital immersion and automation — an obvious current trend in our modern society — produce a reduction in human cognitive capabilities?Nicolelis goes on to note that the human brain can not be reduced to the algorithmic nature of Turing machine, but rather is an organic computer in which hardware and software from the molecular to the organismal level cannot be dissociated, one that uses a recursive mix of analogue and digital processing.
Even though the brain cannot be reduced to a digital machine, could the human brain simply assimilate and begin to mimic the rigid binary logic and algorithmic mode of operation of digital machines due to the growing overexposure to digital devices and the hedonic response triggered by these interactions, and become a biological digital system?
I would volunteer the notion that passive immersion in the digital systems of modern airplanes (in the case of pilots), digital imaging diagnostics (radiologists) and computer-assisted design (architects) may gradually curtail the range and acuity of some mental functions and cognitive skills, such as creativity, insight and the ability to solve novel problems…when people believe that a series of statements that they have been asked to remember will be stored online, they perform worse than a control group that relies only on their own biological memory to remember the statements. This suggests that subcontracting some simple mental searches to Google may, after all, reduce our own brain’s ability to store and recall memories reliably.
The impact of online social media on our natural social skills is another area in which we may be able to measure the true effects of digital systems on human behaviour…An intense presence on social media and virtual reality environments can produce significant anxiety, a reduction in real social interactions, lack of social skills and human empathy, and difficulties in handling solitude. … symptoms and signs of addiction to virtual life are often reported…I began wondering whether the new ‘always connected’ routine is overtaxing our cerebral cortex by dramatically expanding the number of people with whom we can closely communicate, almost instantaneously, via the multitude of social media outlets available on the internet. Instead of respecting the group size limit (about 150 individuals) afforded by our cortical volume, we are now in continuous contact with a group of people that could far exceed that neurobiological limit. What are the consequences of this cortical overtaxing? Anxiety, attention, cognitive and even memory deficits?Homo digitalis
Is the above scenario something we should pay attention to? I think so. If not because of the potential impact on the mental health of this and future generations, but also because of the far-reaching consequences of our increasing interaction with digital systems. For example, at the far limit, I can conceive that this staggering expansion in our online social connectivity is capable of providing a completely new type of selective pressure that may, eventually, bias the evolutionary future of our species. One may begin wondering whether the dawn of ‘Homo digitalis’ is upon us or, more surprisingly, whether he/she is already around, texting and tweeting without being noticed.
Blog Categories:
culture/politics,
future,
futures,
human evolution,
technology
Wednesday, January 25, 2017
Gender and the conflation of equality and sameness
I want to pass on some clips from a sane brief essay by Helena Cronin, author of "The Ant and the Peacock: Altruism and Sexual Selection from Darwin to Today."
The poet Philip Larkin famously proclaimed that sex began in 1963. He was inaccurate by 800 million years. Moreover, what began in the 1960s was instead a campaign to oust sex—in particular, sex differences—in favor of gender...biological differences were thought to spell genetic determinism, immutability, anti-feminism and, most egregiously, women's oppression. Gender, however, was the realm of societal forces; "male" and "female" were social constructs...
...gender has distorted social policy. This is because the campaign has undergone baleful mission-creep. Its aim has morphed from ending discrimination against women into a deeply misguided quest for sameness of outcome for males and females in all fields—above all, 50:50 across the entire workplace. This stems from a fundamental error: the conflation of equality and sameness. And it's an error all too easily made if your starting point is that the sexes are "really" the same and that apparent differences are mere artifacts of sexist socialization.
Equality is about fair treatment, not about people or outcomes being identical; so fairness does not and should not require sameness. However, when sameness gets confused with equality—and equality is of course to do with fairness—then sameness ends up undeservedly sharing their moral high ground. And male/female discrepancies become a moral crusade. Why so few women CEOs or engineers? It becomes socially suspect to explain this as the result not of discrimination but of differential choice.
Well, it shouldn’t be suspect. Because the sexes do differ—and in ways that, on average, make a notable difference to their distribution in today's workplace.
Here's why the sexes differ. A sexual organism must divide its total reproductive investment into two—competing for mates and caring for offspring. Almost from the dawn of sexual reproduction, one sex specialized slightly more in competing for mates and the other slightly more in caring for offspring...the differences go far beyond reproductive plumbing. They are distinctive adaptations for the different life-strategies of competers and carers. Wherever ancestral males and females faced different adaptive problems, we should expect sex differences—encompassing bodies, brains and behaviour. And we should expect that, reflecting those differences, competers and carers will have correspondingly different life-priorities.
As for different outcomes in the workplace, the causes are above all different interests and temperaments (and not women being "less clever" than men). Women on average have a strong preference for working with people—hence the nurses and teachers; and, compared to men, they care more about family and relationships and have broader interests and priorities—hence little appeal in becoming CEOs. Men have far more interest in "things"—hence the engineers; and they are vastly more competitive: more risk-taking, ambitious, status-seeking, single-minded, opportunistic—hence the CEOs. So men and women have, on average, different conceptions of what constitutes success (despite the gender quest to impose the same—male—conception on all).
And here's some intriguing evidence. "Gender" predicts that, as discrimination diminishes, males and females will increasingly converge. But a study of 55 nations found that it was in the most liberal, democratic, equality-driven countries that divergence was greatest. The less the sexism, the greater the sex differences. Difference, this suggests, is evidence not of oppression but of choice; not socialization, not patriarchy, not false consciousness, not even pink t-shirts or personal pronouns … but female choice.
An evolutionary understanding shows that you can't have sex without sex differences. It is only within that powerful scientific framework—in which ideological questions become empirical answers—that gender can be properly understood. And, as the fluidity of "sexualities" enters public awareness, sex is again crucial for informed, enlightened discussion.
So for the sake of science, society and sense, bring back sex.
Tuesday, January 24, 2017
Knowing how confidently we know
Here is a fascinating piece of work from Miyamoto et al. showing that parallel stream of information in the brain regulate the confidence that a memory is correct, apart from the memory itself. From the journal's description of the work:
Self-monitoring and evaluation of our own memory is a mental process called metamemory. For metamemory, we need access to information about the strength of our own memory traces. The brain structures and neural mechanisms involved in metamemory are completely unknown. Miyamoto et al. devised a test paradigm for metamemory in macaques, in which the monkeys judged their own confidence in remembering past experiences. The authors combined this approach with functional brain imaging to reveal the neural substrates of metamemory for retrospection. A specific region in the prefrontal brain was essential for meta mnemonic decision-making. Inactivation of this region caused selective impairment of metamemory, but not of memory itself.and, the abstract from Miyamoto et al.:
We know how confidently we know: Metacognitive self-monitoring of memory states, so-called “metamemory,” enables strategic and efficient information collection based on past experiences. However, it is unknown how metamemory is implemented in the brain. We explored causal neural mechanism of metamemory in macaque monkeys performing metacognitive confidence judgments on memory. By whole-brain searches via functional magnetic resonance imaging, we discovered a neural correlate of metamemory for temporally remote events in prefrontal area 9 (or 9/46d), along with that for recent events within area 6. Reversible inactivation of each of these identified loci induced doubly dissociated selective impairments in metacognitive judgment performance on remote or recent memory, without impairing recognition performance itself. The findings reveal that parallel metamemory streams supervise recognition networks for remote and recent memory, without contributing to recognition itself.
Monday, January 23, 2017
How our evolutionary psychology elected Donald Trump.
While I feel that in principle our world might be best governed by a multinational meritocratic elite (of the sort that just met in Davos Switzerland) I can’t even begin to feel the same kind of emotional bonding to this vague impersonal entity that I feel towards my hometown of Austin Texas, or Madison Wisconsin where I spent my adult working life. (And, business oligarchies governing the world have shown much more regard for maximizing profits than for the maintenance and quality of local human communities, the entities that most of us care about and can bond to.) Our brains evolved and are hard wired for caring most about family and tribe. Brooks makes these points very compellingly in his recent Op-Ed piece that notes the old German sociological distinction between gemeinschaft and gesellschaft.
I think a good analogy is to hope that over time these millions of people, like the nerve cells in our brain, will do a "work-around" the focal lesion (Trump) to restore and maintain normal operations of the system.
All across the world, we have masses of voters who live in a world of gemeinschaft: where relationships are personal, organic and fused by particular affections. These people define their loyalty to community, faith and nation in personal, in-the-gut sort of ways.
But we have a leadership class and an experience of globalization that is from the world of gesellschaft: where systems are impersonal, rule based, abstract, indirect and formal.
Many people in Europe love their particular country with a vestigial affection that is like family — England, Holland or France. But meritocratic elites of Europe gave them an abstract intellectual construct called the European Union.
Many Americans think their families and their neighborhoods are being denuded by the impersonal forces of globalization, finance and technology. All the Republican establishment could offer was abstract paeans to the free market. All the Democrats could offer was Hillary Clinton, the ultimate cautious, remote, calculating, gesellschaft thinker.
It was the right moment for Trump, the ultimate gemeinschaft man. He is all gut instinct, all blood and soil, all about loyalty over detached reason. His business is a pre-modern family clan, not an impersonal corporation, and he is staffing his White House as a pre-modern family monarchy, with his relatives and a few royal retainers. In his business and political dealings, he simply doesn’t acknowledge the difference between private and public, personal and impersonal. Everything is personal, pulsating outward from his needy core.Brooks goes on to argue that what made Trump right electorally will also make him an incompetent president. The danger is not so much the rise of fascism, a new authoritarian age, but that "everything will become disorganized, chaotic, degenerate, clownish and incompetent." How does the ultimate anti-institutional man sit at the nerve center of a four-million-person institution?
I think a good analogy is to hope that over time these millions of people, like the nerve cells in our brain, will do a "work-around" the focal lesion (Trump) to restore and maintain normal operations of the system.
Blog Categories:
culture/politics,
evolutionary psychology
Friday, January 20, 2017
The deepening of our cultural echo chambers.
Farhad Manjoo does a nice piece in the Tech and Society section of the NY Times, pointing out how much has changed since the 1970s, when TV programs like “All in the Family” had broad cultural reach, being watched by one out of every three households with a television. Norman Lear’s “One Day at a Time” was watched by 17 million viewers every week. A new version of “One day at a Time” on Netflix will almost certainly fail to replicate such a broad cultural reach. Some clips from Manjoo:
The shows are separated by 40 years of technological advances — a progression from the over-the-air broadcast era in which Mr. Lear made it big, to the cable age of MTV and CNN and HBO, to, finally, the modern era of streaming services like Netflix. Each new technology allowed a leap forward in choice, flexibility and quality; the “Golden Age of TV” offers so much choice that some critics wonder if it’s become overwhelming…Across the entertainment business, from music to movies to video games, technology has flooded us with a profusion of cultural choice.
...we’re returning to the cultural era that predated radio and TV, an era in which entertainment was fragmented and bespoke…It was a really odd moment in history to have so many people watching the same thing at the same time… for a brief while, from the 1950s to the late 1980s, broadcast television served cultural, social and political roles far greater than the banality of its content would suggest. Because it featured little choice, TV offered something else: the raw material for a shared culture.
As the broadcast era changed into one of cable and then streaming, TV was transformed from a wasteland into a bubbling sea of creativity. But it has become a sea in which everyone swims in smaller schools...Only around 12 percent of television households, or about 14 million to 15 million people, regularly tuned into “NCIS” and “The Big Bang Theory,” the two most popular network shows of the 2015-16 season…Netflix’s biggest original drama last year, “Stranger Things,” was seen by about 14 million adults in the month after it first aired…during much of the 1980s, a broadcast show that attracted 14 million to 16 million viewers would have been in danger of cancellation.
A spokesman for Netflix pointed out that even if audiences were smaller than in the past, its shows still had impact. “Making a Murderer” set off a re-examination of a widely criticized murder trial, for instance, while “Orange Is the New Black” was one of the first shows to feature a transgender actor, Laverne Cox….But I suspect the impacts, like the viewership, tend to be restricted along the same social and cultural echo chambers into which we’ve split ourselves in the first place. Those effects do not approach the vast ways that TV once remade the culture.
Thursday, January 19, 2017
The immensity of the vacated present.
I am repeating, as I did with last Thursday's post, a post from several years ago with material that continues to be personally important to me. Here it is:
The title of this post is a phrase from a recent essay by Vivian Gornick, "The cost of daydreaming," describing an experience that very much resonates with my own, and that I think is describing her discovery and way of noticing the distinction between our internal mind wandering (default mode) and present centered outwardly oriented (attentional) brain networks (the subject of many MindBlog posts). On finding that she could sense the start of daydreaming and suppress it:
The title of this post is a phrase from a recent essay by Vivian Gornick, "The cost of daydreaming," describing an experience that very much resonates with my own, and that I think is describing her discovery and way of noticing the distinction between our internal mind wandering (default mode) and present centered outwardly oriented (attentional) brain networks (the subject of many MindBlog posts). On finding that she could sense the start of daydreaming and suppress it:
...the really strange and interesting thing happened. A vast emptiness began to open up behind my eyes as I went about my daily business. The daydreaming, it seemed, had occupied more space than I’d ever imagined. It was as though a majority of my waking time had routinely been taken up with fantasizing, only a narrow portion of consciousness concentrated on the here and now...I began to realize what daydreaming had done for me — and to me.
Turning 60 was like being told I had six months to live. Overnight, retreating into the refuge of a fantasized tomorrow became a thing of the past. Now there was only the immensity of the vacated present...It wasn’t hard to cut short the daydreaming, but how exactly did one manage to occupy the present when for so many years one hadn’t?"Then, after a period of time:
...I became aware, after a street encounter, that the vacancy within was stirring with movement. A week later another encounter left me feeling curiously enlivened. It was the third one that did it. A hilarious exchange had taken place between me and a pizza deliveryman, and sentences from it now started repeating themselves in my head as I walked on, making me laugh each time anew, and each time with yet deeper satisfaction. Energy — coarse and rich — began to swell inside the cavity of my chest. Time quickened, the air glowed, the colors of the day grew vivid; my mouth felt fresh. A surprising tenderness pressed against my heart with such strength it seemed very nearly like joy; and with unexpected sharpness I became alert not to the meaning but to the astonishment of human existence. It was there on the street, I realized, that I was filling my skin, occupying the present.
Blog Categories:
attention/perception,
mindfulness,
self,
self help
Wednesday, January 18, 2017
A fitness downside to statin drugs?
Before passing on this article by Gretchen Reynolds and the work of Chung et al. that it points to, I'll start with a personal account of why it immediately caught my attention. I started taking a statin (10 mg simvastatin) over 20 years ago, not because my lipids were high, but because I read that statins had anti-inflammatory effects. Over the past year I have become increasingly alarmed that my hand muscle and grip strength were weakening. For a recital pianist, this can mean the end of performing. Since a known side effect of statins is to do just this, I stopped taking simvastatin, and within days could feel muscle mass and strength returning. (I'm doing a recital on Feb. 19.) It's interesting that this side effect became obvious only after many years, I would guess a function of aging (I'm 74).
Now, getting to the work Reynolds notes , a new study in mice suggest that statin drugs make exercise more difficult and less beneficial. Animals on statins loose grip strength, are more easily fatigued, and do not show the normal exercise-induced increase in muscle fiber size. Here is the technical abstract:
Now, getting to the work Reynolds notes , a new study in mice suggest that statin drugs make exercise more difficult and less beneficial. Animals on statins loose grip strength, are more easily fatigued, and do not show the normal exercise-induced increase in muscle fiber size. Here is the technical abstract:
HMG-CoA reductase inhibitors (statins) are the most effective pharmacological means of reducing cardiovascular disease risk. The most common side effect of statin use is skeletal muscle myopathy, which may be exacerbated by exercise. Hypercholesterolemia and training status are factors that are rarely considered in the progression of myopathy. The purpose of this study was to determine the extent to which acute and chronic exercise can influence statin-induced myopathy in hypercholesterolemic (ApoE-/-) mice. Mice either received daily injections of saline or simvastatin (20 mg/kg) while: 1) remaining sedentary (Sed), 2) engaging in daily exercise for two weeks (novel, Nov), or 3) engaging in daily exercise for two weeks after a brief period of training (accustomed, Acct) (2x3 design, n = 60). Cholesterol, activity, strength, and indices of myofiber damage and atrophy were assessed. Running wheel activity declined in both exercise groups receiving statins (statin x time interaction, p less than 0.05). Cholesterol, grip strength, and maximal isometric force were significantly lower in all groups following statin treatment (statin main effect, p less than 0.05). Mitochondrial content and myofiber size were increased and 4-HNE was decreased by exercise (statin x exercise interaction, p less than 0.05), and these beneficial effects were abrogated by statin treatment. Exercise (Acct and Nov) increased atrogin-1 mRNA in combination with statin treatment, yet enhanced fiber damage or atrophy was not observed. The results from this study suggest that exercise (Nov, Acct) does not exacerbate statin-induced myopathy in ApoE-/- mice, yet statin treatment reduces activity in a manner that prevents muscle from mounting a beneficial adaptive response to training.
Tuesday, January 17, 2017
Research on consequences of low socioeconomic status becoming a small industry.
It is becoming hard to keep up with research on biological and behavioral consequences of low socioeconomic status - one of MindBlog's subject threads since its beginning in 2006. I pass on abstract of two recent samples of work.
Gary Evans on childhood poverty and adult psychological well-being:
Childhood disadvantage has repeatedly been linked to adult physical morbidity and mortality. We show in a prospective, longitudinal design that childhood poverty predicts multimethodological indices of adult (24 y of age) psychological well-being while holding constant similar childhood outcomes assessed at age 9. Adults from low-income families manifest more allostatic load, an index of chronic physiological stress, higher levels of externalizing symptoms (e.g., aggression) but not internalizing symptoms (e.g., depression), and more helplessness behaviors. In addition, childhood poverty predicts deficits in adult short-term spatial memory.And, Gillian and Nettle in an upcoming target article for Behavioral and Brain Science titled "The Behavioural Constellation of Deprivation: Causes and Consequences":
Socioeconomic differences in behaviour are pervasive and well documented, but their causes are not yet well understood. Here, we make the case that there is a cluster of behaviours associated with lower socioeconomic status, which we call the behavioural constellation of deprivation. We propose that the relatively limited control associated with lower socioeconomic status curtails the extent to which people can expect to realise deferred rewards, leading to more present-oriented behaviour in a range of domains. We illustrate this idea using the specific factor of extrinsic mortality risk, an important factor in evolutionary theoretical models. We emphasise the idea that the present-oriented behaviours of the constellation are a contextually appropriate response to structural and ecological factors, rather than pathology or a failure of willpower. We highlight some principles from evolutionary theoretical models that can deepen our understanding of how socioeconomic inequalities can become amplified and embedded. These principles are that: 1) Small initial disparities can lead to larger eventual inequalities, 2) Feed-back loops can operate to embed early life circumstances, 3) Constraints can breed further constraints, and 4) Feed-back loops can operate over generations. We discuss some of the mechanisms by which socioeconomic status may influence behaviour. We then review how the contextually appropriate response perspective that we have outlined fits with other findings about control and temporal discounting. Finally, we discuss the implications of this interpretation for research and policy.
Blog Categories:
culture/politics,
fear/anxiety/stress,
human development
Monday, January 16, 2017
Positivity in older adults is more related to cognitive decline than to emotion regulation.
It is commonly supposed that the more positive outlook characteristic of older people is due to their ability to regulate their emotions more effectively than younger people. Zebrowitz et al, to the contrary, suggest a decline in cognitive capacity is responsible, arguing that more cognitive resources are required to process negative stimuli, because they are more cognitively elaborated than positive ones:
An older adult positivity effect, i.e., the tendency for older adults to favor positive over negative stimulus information more than do younger adults, has been previously shown in attention, memory, and evaluations. This effect has been attributed to greater emotion regulation in older adults. In the case of attention and memory, this explanation has been supported by some evidence that the older adult positivity effect is most pronounced for negative stimuli, which would motivate emotion regulation, and that it is reduced by cognitive load, which would impede emotion regulation. We investigated whether greater older adult positivity in the case of evaluative responses to faces is also enhanced for negative stimuli and attenuated by cognitive load, as an emotion regulation explanation would predict. In two studies, younger and older adults rated trustworthiness of faces that varied in valence both under low and high cognitive load, with the latter manipulated by a distracting backwards counting task. In Study 1, face valence was manipulated by attractiveness (low /disfigured faces, medium, high/fashion models’ faces). In Study 2, face valence was manipulated by trustworthiness (low, medium, high). Both studies revealed a significant older adult positivity effect. However, contrary to an emotion regulation account, this effect was not stronger for more negative faces, and cognitive load increased rather than decreased the rated trustworthiness of negatively valenced faces. Although inconsistent with emotion regulation, the latter effect is consistent with theory and research arguing that more cognitive resources are required to process negative stimuli, because they are more cognitively elaborated than positive ones. The finding that increased age and increased cognitive load both enhanced the positivity of trustworthy ratings suggests that the older adult positivity effect in evaluative ratings of faces may reflect age-related declines in cognitive capacity rather than increases in the regulation of negative emotions.
Blog Categories:
aging,
emotion,
emotions,
faces,
social cognition
Friday, January 13, 2017
Seeing faces of young black boys facilitates identification of threatening stimuli.
From Todd et al. (open source):
Pervasive stereotypes linking Black men with violence and criminality can lead to implicit cognitive biases, including the misidentification of harmless objects as weapons. In four experiments, we investigated whether these biases extend even to young Black boys (5-year-olds). White participants completed sequential priming tasks in which they categorized threatening and nonthreatening objects and words after brief presentations of faces of various races (Black and White) and ages (children and adults). Results consistently revealed that participants had less difficulty (i.e., faster response times, fewer errors) identifying threatening stimuli and more difficulty identifying nonthreatening stimuli after seeing Black faces than after seeing White faces, and this racial bias was equally strong following adult and child faces. Process-dissociation-procedure analyses further revealed that these effects were driven entirely by automatic (i.e., unintentional) racial biases. The collective findings suggest that the perceived threat commonly associated with Black men may generalize even to young Black boys.Note: There is a correction to the description of experiment 3.
Blog Categories:
attention/perception,
fear/anxiety/stress,
social cognition
Thursday, January 12, 2017
The milliseconds of a choice - Watching your mind when it matters.
I'm finding, with increasing frequency, that an article about health or psychology in the New York Times that I find interesting has an attached note that it was first published several years earlier. While working on yesterday's MindBlog post I came across a 2014 post I wrote that I think makes some important points about our self-regulation that are worth repeating. So, I'm going to copy what the Times is doing and repeat it today. I'm tempted to edit it, but won't, beyond mentioning that I would considerably tone down my positive reference to brain training games (that I no longer indulge in). Here is the 2014 post:
This is actually a post about mindfulness, in reaction to Dan Hurley's article describing how contemporary applications of the ancient tradition of mindfulness meditation are being engaged in many more contexts than the initial emphasis on chilling out in the 1970s, and being employed for very practical purses such as mental resilience in a war zone. It seems like to me that we are approaching a well defined technology of brain control whose brain basis is understood in some detail. I've done numerous posts on behavioral and brain correlates of mindfulness meditation (enter 'meditation' or 'mindfulness' in MindBlog's search box in the left column). For example, only four weeks of a mindfulness meditation regime emphasizing relaxation of different body parts correlates with increases in white matter (nerve tract) efficiency. Improvements in cognitive performance, working memory, etc. have been claimed. A special issue of The journal Social Cognitive and Affective Neuroscience discusses issue in the research.
Full time mindfulness might be a bad idea, suppressing the mind wandering that facilitates bursts of creative insight. (During my vision research career, my most original ideas popped up when I was spacing out, once when I was riding a bike along a lakeshore path.) Many physicists and writers reports their best ideas happen when they are disengaged. It also appears that mindfulness may inhibit implicit learning in which habits and skill are acquired without conscious awareness.
Obviously knowing whether we are in an attentional or mind wandering (default, narrative) modes is useful (see here, and here), and this is where the title of this posts comes in. To note and distinguish our mind state is most effectively accomplished with a particular style of alertness or awareness that is functioning very soon (less than 200 milliseconds) after a new thought or sensory perception appears to us. This is a moment of fragility that offers a narrow time window of choice over whether our new brain activity will be either enhanced or diminished in favor of a more desired activity. This is precisely what is happening in mindfulness meditation that instructs a central focus of some sort (breathing, body relaxation, or whatever) to which one returns as soon as one notes that any other thoughts or distractions have popped into awareness. The ability to rapidly notice and attend to thoughts and emotions of these short time scales is enhanced by brain training regimes of the sort offered by BrainHq of positscience.com and others. I have found the exercises on this site, originated by Michael Merznich, to be the most useful. It offers summaries of changes in brain speed, attention, memory, intelligence, navigation, etc. that result from performing the exercises - changes that can persist for years.
A book title that has been popping into my head for at least the last 15 years is "The 200 Millisecond Manager." (a riff on the title the popular book of the early 1980's by Blanchard and Johnson, "The One Minute Manager.") The gist of the argument would be that given in the "Guide" section of some 2005 writing, and actually in Chapter 12 of my book, Figure 12-7.
It might make the strident assertion that the most important thing that matters in regulating our thoughts, feelings, and actions is their first 100-200 msec in the brain, which is when the levers and pulleys are actually doing their thing. It would be a nuts and bolts approach to altering - or at least inhibiting - self limiting behaviors. It would suggest that a central trick is to avoid taking on on the ‘enormity of it all,’ and instead use a variety of techniques to get our awareness down to the normally invisible 100-200 msec time interval in which our actions are being programmed. Here we are talking mechanics during the time period is when all the limbic and other routines that result from life script, self image, temperament, etc., actually can start-up. The suggestion is that you can short circuit some of this process if you bring awareness to the level of observing the moments during which a reaction or behavior is becoming resident, and can sometimes say “I don’t think so, I think I'll do something else instead.”
"The 200 msec Manager" has gone through the ‘this could be a book’ cycle several times, the actual execution bogging down as I actually got into description of the underlying science and techniques for expanding awareness. Also, I note the enormous number of books out there on meditation, relaxation, etc. that are all really addressing the same core processes in different ways.
This is actually a post about mindfulness, in reaction to Dan Hurley's article describing how contemporary applications of the ancient tradition of mindfulness meditation are being engaged in many more contexts than the initial emphasis on chilling out in the 1970s, and being employed for very practical purses such as mental resilience in a war zone. It seems like to me that we are approaching a well defined technology of brain control whose brain basis is understood in some detail. I've done numerous posts on behavioral and brain correlates of mindfulness meditation (enter 'meditation' or 'mindfulness' in MindBlog's search box in the left column). For example, only four weeks of a mindfulness meditation regime emphasizing relaxation of different body parts correlates with increases in white matter (nerve tract) efficiency. Improvements in cognitive performance, working memory, etc. have been claimed. A special issue of The journal Social Cognitive and Affective Neuroscience discusses issue in the research.
Full time mindfulness might be a bad idea, suppressing the mind wandering that facilitates bursts of creative insight. (During my vision research career, my most original ideas popped up when I was spacing out, once when I was riding a bike along a lakeshore path.) Many physicists and writers reports their best ideas happen when they are disengaged. It also appears that mindfulness may inhibit implicit learning in which habits and skill are acquired without conscious awareness.
Obviously knowing whether we are in an attentional or mind wandering (default, narrative) modes is useful (see here, and here), and this is where the title of this posts comes in. To note and distinguish our mind state is most effectively accomplished with a particular style of alertness or awareness that is functioning very soon (less than 200 milliseconds) after a new thought or sensory perception appears to us. This is a moment of fragility that offers a narrow time window of choice over whether our new brain activity will be either enhanced or diminished in favor of a more desired activity. This is precisely what is happening in mindfulness meditation that instructs a central focus of some sort (breathing, body relaxation, or whatever) to which one returns as soon as one notes that any other thoughts or distractions have popped into awareness. The ability to rapidly notice and attend to thoughts and emotions of these short time scales is enhanced by brain training regimes of the sort offered by BrainHq of positscience.com and others. I have found the exercises on this site, originated by Michael Merznich, to be the most useful. It offers summaries of changes in brain speed, attention, memory, intelligence, navigation, etc. that result from performing the exercises - changes that can persist for years.
A book title that has been popping into my head for at least the last 15 years is "The 200 Millisecond Manager." (a riff on the title the popular book of the early 1980's by Blanchard and Johnson, "The One Minute Manager.") The gist of the argument would be that given in the "Guide" section of some 2005 writing, and actually in Chapter 12 of my book, Figure 12-7.
It might make the strident assertion that the most important thing that matters in regulating our thoughts, feelings, and actions is their first 100-200 msec in the brain, which is when the levers and pulleys are actually doing their thing. It would be a nuts and bolts approach to altering - or at least inhibiting - self limiting behaviors. It would suggest that a central trick is to avoid taking on on the ‘enormity of it all,’ and instead use a variety of techniques to get our awareness down to the normally invisible 100-200 msec time interval in which our actions are being programmed. Here we are talking mechanics during the time period is when all the limbic and other routines that result from life script, self image, temperament, etc., actually can start-up. The suggestion is that you can short circuit some of this process if you bring awareness to the level of observing the moments during which a reaction or behavior is becoming resident, and can sometimes say “I don’t think so, I think I'll do something else instead.”
"The 200 msec Manager" has gone through the ‘this could be a book’ cycle several times, the actual execution bogging down as I actually got into description of the underlying science and techniques for expanding awareness. Also, I note the enormous number of books out there on meditation, relaxation, etc. that are all really addressing the same core processes in different ways.
Blog Categories:
acting/choosing,
attention/perception,
consciousness,
emotion,
emotions,
meditation,
mindfulness
Wednesday, January 11, 2017
People who move more are happier.
No surprises here, but this study polling people using a smartphone app designed by the experimenters quantifies the effect. The use of smartphones to gather large-scale data is becoming a growth industry. A notable earlier study of this sort was Killingsworth and Gilbert's 2010 "A wandering mind is an unhappy mind."
Physical activity, both exercise and non-exercise, has far-reaching benefits to physical health. Although exercise has also been linked to psychological health (e.g., happiness), little research has examined physical activity more broadly, taking into account non-exercise activity as well as exercise. We examined the relationship between physical activity (measured broadly) and happiness using a smartphone application. This app has collected self-reports of happiness and physical activity from over ten thousand participants, while passively gathering information about physical activity from the accelerometers on users' phones. The findings reveal that individuals who are more physically active are happier. Further, individuals are happier in the moments when they are more physically active. These results emerged when assessing activity subjectively, via self-report, or objectively, via participants' smartphone accelerometers. Overall, this research suggests that not only exercise but also non-exercise physical activity is related to happiness. This research further demonstrates how smartphones can be used to collect large-scale data to examine psychological, behavioral, and health-related phenomena as they naturally occur in everyday life.
Tuesday, January 10, 2017
From Power to Inaction.
An interesting little piece from Durso et al. on a consequence of feeling powerful (The paper appears to be open source, so you can note the details of the two experiments, involving the usual gaggle of undergraduate psychology students used as subjects and given credit for their participation.)
Research has shown that people who feel powerful are more likely to act than those who feel powerless, whereas people who feel ambivalent are less likely to act than those whose reactions are univalent (entirely positive or entirely negative). But what happens when powerful people also are ambivalent? On the basis of the self-validation theory of judgment, we hypothesized that power and ambivalence would interact to predict individuals’ action. Because power can validate individuals’ reactions, we reasoned that feeling powerful strengthens whatever reactions people have during a decision. It can strengthen univalent reactions and increase action orientation, as shown in past research. Among people who hold an ambivalent judgment, however, those who feel powerful would be less action oriented than those who feel powerless. Two experiments provide evidence for this hypothesized interactive effect of power and ambivalence on individuals’ action tendencies during both positive decisions (promoting an employee; Experiment 1) and negative decisions (firing an employee; Experiment 2). In summary, when individuals’ reactions are ambivalent, power increases the likelihood of inaction.
Monday, January 09, 2017
The Second Law of Thermodynamics is the First Law of Psychology.
I pass along some a clip from Steven Pinker’s contribution to the edge.org annual question “What scientific term or concept ought to be more widely know.” He notes a recent paper by Tooby, Cosmides, and Barrett with the title of this post, and continues:
The Second Law of Thermodynamics states that in an isolated system (one that is not taking in energy), entropy never decreases. (The First Law is that energy is conserved; the Third, that a temperature of absolute zero is unreachable.)
Why the awe for the Second Law? The Second Law defines the ultimate purpose of life, mind, and human striving: to deploy energy and information to fight back the tide of entropy and carve out refuges of beneficial order. An underappreciation of the inherent tendency toward disorder, and a failure to appreciate the precious niches of order we carve out, are a major source of human folly.
To start with, the Second Law implies that misfortune may be no one’s fault. The biggest breakthrough of the scientific revolution was to nullify the intuition that the universe is saturated with purpose: that everything happens for a reason. In this primitive understanding, when bad things happen—accidents, disease, famine—someone or something must have wanted them to happen. This in turn impels people to find a defendant, demon, scapegoat, or witch to punish. Galileo and Newton replaced this cosmic morality play with a clockwork universe in which events are caused by conditions in the present, not goals for the future. The Second Law deepens that discovery: Not only does the universe not care about our desires, but in the natural course of events it will appear to thwart them, because there are so many more ways for things to go wrong than to go right. Houses burn down, ships sink, battles are lost for the want of a horseshoe nail.
Poverty, too, needs no explanation. In a world governed by entropy and evolution, it is the default state of humankind. Matter does not just arrange itself into shelter or clothing, and living things do everything they can not to become our food. What needs to be explained is wealth. Yet most discussions of poverty consist of arguments about whom to blame for it. More generally, an underappreciation of the Second Law lures people into seeing every unsolved social problem as a sign that their country is being driven off a cliff. It’s in the very nature of the universe that life has problems. But it’s better to figure out how to solve them—to apply information and energy to expand our refuge of beneficial order—than to start a conflagration and hope for the best.
Friday, January 06, 2017
Dual streams of speech processing.
A large number of studies have documented how visual information in the brain is processed in dual streams of information: dorsal (where is it?), and ventral (what is it?). Fridriksson et al. have now applied a dual route model to speech processing that distinguishes form to meaning from form to articulation processing, and I pass on their abstract plus one graphic showing the brain regions they are dealing with:
Several dual route models of human speech processing have been proposed suggesting a large-scale anatomical division between cortical regions that support motor–phonological aspects vs. lexical–semantic aspects of speech processing. However, to date, there is no complete agreement on what areas subserve each route or the nature of interactions across these routes that enables human speech processing. Relying on an extensive behavioral and neuroimaging assessment of a large sample of stroke survivors, we used a data-driven approach using principal components analysis of lesion-symptom mapping to identify brain regions crucial for performance on clusters of behavioral tasks without a priori separation into task types. Distinct anatomical boundaries were revealed between a dorsal frontoparietal stream and a ventral temporal–frontal stream associated with separate components. Collapsing over the tasks primarily supported by these streams, we characterize the dorsal stream as a form-to-articulation pathway and the ventral stream as a form-to-meaning pathway. This characterization of the division in the data reflects both the overlap between tasks supported by the two streams as well as the observation that there is a bias for phonological production tasks supported by the dorsal stream and lexical–semantic comprehension tasks supported by the ventral stream. As such, our findings show a division between two processing routes that underlie human speech processing and provide an empirical foundation for studying potential computational differences that distinguish between the two routes.
Component 1 (Form-to-meaning processing necessary for single word and sentence comprehension, also reversed (meaning-to-form processing) to support lexical–semantic aspects of speech production) is represented in Left, Component 2 (form-to-articulation processing) is represented in Center (Component 2a), and Component 2 modulated by a lesion component derived from lesion maps is represented in Right (Component 2b).
Thursday, January 05, 2017
The effect of status on stress depends on the stability of the hierarchy.
In most human societies, individuals with higher socioeconomic status live longer, experience increased well-being, and have lower rates of stress-related diseases such as cardiovascular conditions and type 2 diabetes, benefits that may be explained in part by the stress-buffering effects of status. Knight and Mehta provide evidence that this effect depends on how stable the social hierarchy is. They suggest that during times of hierarchical instability, when status could change, that high status might boost, not buffer, stress responses. I want to pass on their description of how social status and hierarchy stability were experimentally manipulated in the undergraduate participants in their study, followed by their abstract.
We tested our predictions by experimentally manipulating social status and hierarchy stability in undergraduate participants (n = 118; 57.3% female; age: M = 19.8) who were recruited for course credit. Participants were told that, on the basis of their responses to prelaboratory questionnaires, they had been assigned to complete an upcoming puzzle-building task as either a “manager” (high status) or “builder” (low status), and that another participant (actually a confederate) would perform the unassigned role. Participants were told specifically that the assignment was based on their “leadership skills and experience” to connect the role assignment to prestige. In reality, roles were randomly assigned. Participants were also told that the manager would be in charge of directing subordinates in the building process and would evaluate the “builder” at the end of the task to determine how to split bonus money.
Next, all participants were asked to complete the The Trier Social Stress Test (TSST), a 5-min speech about one’s qualification for a job and a 5-min serial subtraction math task in front of a panel of observers. To manipulate hierarchy stability, participants were told that their role (manager/builder) could change based on the speech/math task (unstable hierarchy) or that their performance on the task would not affect their role assignment (stable hierarchy). A 5-min preparation period was completed in the presence of a sex-matched confederate to increase the salience of the manipulations. Panelists and confederates were blind to participants’ assigned conditions. Participants provided informed consent to participate in a group activity and perform a speech task. The University of Oregon’s Institutional Review Board approved all methods.
Hormones were assayed from saliva collected via passive drool ∼10 min after arriving at the laboratory (baseline), as well as 0, 20, and 40 min after the TSST. Participants responded to a prompt asking how “in control” they felt after assignment to status and stability conditions and after the TSST, which was included as a separate item in a broader measure of self-reported affect. Three independent observers rated videos of each participant’s speech for status-relevant behaviors and two items that assessed overall interview performanceAbstract
High social status reduces stress responses in numerous species, but the stress-buffering effect of status may dissipate or even reverse during times of hierarchical instability. In an experimental test of this hypothesis, 118 participants (57.3% female) were randomly assigned to a high- or low-status position in a stable or unstable hierarchy and were then exposed to a social-evaluative stressor (a mock job interview). High status in a stable hierarchy buffered stress responses and improved interview performance, but high status in an unstable hierarchy boosted stress responses and did not lead to better performance. This general pattern of effects was observed across endocrine (cortisol and testosterone), psychological (feeling in control), and behavioral (competence, dominance, and warmth) responses to the stressor. The joint influence of status and hierarchy stability on interview performance was explained by feelings of control and testosterone reactivity. Greater feelings of control predicted enhanced interview performance, whereas increased testosterone reactivity predicted worse performance. These results provide direct causal evidence that high status confers adaptive benefits for stress reduction and performance only when the social hierarchy is stable. When the hierarchy is unstable, high status actually exacerbates stress responses.
Blog Categories:
culture/politics,
fear/anxiety/stress,
social cognition
Wednesday, January 04, 2017
What is different about the brains of “superagers”?
Barrett and colleagues have performed fMRI studies on “superagers” age 60-80, and find that superagers not only perform similarly to young adults on memory testing, they also do not show the patterns of brain atrophy typical of aging in “emotional” (midcingulate cortex and the anterior insula) regions that are major hubs for general communication throughout the brain, serving language, stress, internal organ regulation, and sensory coordination. These are the default mode network well known to be involved in episodic memory function, and the salience network implicated in attention, executive control, and motivational and inhibitory processes integral to memory encoding and retrieval. The authors suggest that the key to maintaining these areas and their function is strenuous physical and mental athleticism, working hard at difficult tasks, whether physical or mental.
Here is a graphic from the article followed by the abstract:
Here is a graphic from the article followed by the abstract:
Superaging signature. The figure shows key nodes of the salience network (blue) and default mode network (yellow) where superagers and young adults are indistinguishable in cortical thickness. Preserved thickness in these regions is what distinguishes superagers from typical older adults.Abstract
Decline in cognitive skills, especially in memory, is often viewed as part of “normal” aging. Yet some individuals “age better” than others. Building on prior research showing that cortical thickness in one brain region, the anterior midcingulate cortex, is preserved in older adults with memory performance abilities equal to or better than those of people 20–30 years younger (i.e., “superagers”), we examined the structural integrity of two large-scale intrinsic brain networks in superaging: the default mode network, typically engaged during memory encoding and retrieval tasks, and the salience network, typically engaged during attention, motivation, and executive function tasks. We predicted that superagers would have preserved cortical thickness in critical nodes in these networks. We defined superagers (60–80 years old) based on their performance compared to young adults (18–32 years old) on the California Verbal Learning Test Long Delay Free Recall test. We found regions within the networks of interest where the cerebral cortex of superagers was thicker than that of typical older adults, and where superagers were anatomically indistinguishable from young adults; hippocampal volume was also preserved in superagers. Within the full group of older adults, thickness of a number of regions, including the anterior temporal cortex, rostral medial prefrontal cortex, and anterior midcingulate cortex, correlated with memory performance, as did the volume of the hippocampus. These results indicate older adults with youthful memory abilities have youthful brain regions in key paralimbic and limbic nodes of the default mode and salience networks that support attentional, executive, and mnemonic processes subserving memory function.In the NYTimes piece describing this work Barrett suggests:
The road to superaging is difficult, though, because these brain regions have another intriguing property: When they increase in activity, you tend to feel pretty bad — tired, stymied, frustrated. Think about the last time you grappled with a math problem or pushed yourself to your physical limits. Hard work makes you feel bad in the moment. The Marine Corps has a motto that embodies this principle: “Pain is weakness leaving the body.” That is, the discomfort of exertion means you’re building muscle and discipline. Superagers are like Marines: They excel at pushing past the temporary unpleasantness of intense effort. Studies suggest that the result is a more youthful brain that helps maintain a sharper memory and a greater ability to pay attention.
Tuesday, January 03, 2017
How to market the reality of climate change more effectively.
Baldwin and Lammers perform several studies to show that conservative are positively affected by past but not by future-focused environmental comparisons. In one of the studies, for example, subjects were shown a set of satellite images of a river basin either full of water or dried up. The authors manipulated temporal comparisons by describing the photographs as reflecting changes in the environment from the past to the present (past-focused condition) or reflecting expected changes in the environment from the present to the future (future-focused condition). Participants then reported their proenvironmental attitudes. Conservatives were more proenvironmental after the past to present description than the present to future description. Here are their summaries:
Significance
Significance
Political polarization on important issues can have dire consequences for society, and divisions regarding the issue of climate change could be particularly catastrophic. Building on research in social cognition and psychology, we show that temporal comparison processes largely explain the political gap in respondents’ attitudes towards and behaviors regarding climate change. We found that conservatives’ proenvironmental attitudes and behaviors improved consistently and drastically when we presented messages that compared the environment today with that of the past. This research shows how ideological differences can arise from basic psychological processes, demonstrates how such differences can be overcome by framing a message consistent with these basic processes, and provides a way to market the science behind climate change more effectively.Abstract
Conservatives appear more skeptical about climate change and global warming and less willing to act against it than liberals. We propose that this unwillingness could result from fundamental differences in conservatives’ and liberals’ temporal focus. Conservatives tend to focus more on the past than do liberals. Across six studies, we rely on this notion to demonstrate that conservatives are positively affected by past- but not by future-focused environmental comparisons. Past comparisons largely eliminated the political divide that separated liberal and conservative respondents’ attitudes toward and behavior regarding climate change, so that across these studies conservatives and liberals were nearly equally likely to fight climate change. This research demonstrates how psychological processes, such as temporal comparison, underlie the prevalent ideological gap in addressing climate change. It opens up a promising avenue to convince conservatives effectively of the need to address climate change and global warming.
Subscribe to:
Posts (Atom)