An open source article by Presti et al:
Significance
The motor system has been recognized as a fundamental neural machinery for spatial and social cognition, making the study of the interplay between architecture and social behavior worthwhile. Here, we tested how a virtual architectural experience alters the subsequent processing of body expressions, showing that the motor system participates at two distinct stages: the earliest influenced by the dynamic architectural experience and the latter modulated by the actual physical characteristics. These findings highlight the existence of an overlapping motor neural substrate devoted to spatial and social cognition, with the architectural space exerting an early and possibly adapting effect on the later social experience. Ultimately, spatial design may impact the processing of human emotions.Abstract
The interplay between space and cognition is a crucial issue in Neuroscience leading to the development of multiple research fields. However, the relationship between architectural space and the movement of the inhabitants and their interactions has been too often neglected, failing to provide a unifying view of architecture's capacity to modulate social cognition broadly. We bridge this gap by requesting participants to judge avatars’ emotional expression (high vs. low arousal) at the end of their promenade inside high- or low-arousing architectures. Stimuli were presented in virtual reality to ensure a dynamic, naturalistic experience. High-density electroencephalography (EEG) was recorded to assess the neural responses to the avatar’s presentation. Observing highly aroused avatars increased Late Positive Potentials (LPP), in line with previous evidence. Strikingly, 250 ms before the occurrence of the LPP, P200 amplitude increased due to the experience of low-arousing architectures, reflecting an early greater attention during the processing of body expressions. In addition, participants stared longer at the avatar’s head and judged the observed posture as more arousing. Source localization highlighted a contribution of the dorsal premotor cortex to both P200 and LPP. In conclusion, the immersive and dynamic architectural experience modulates human social cognition. In addition, the motor system plays a role in processing architecture and body expressions suggesting that the space and social cognition interplay is rooted in overlapping neural substrates. This study demonstrates that the manipulation of mere architectural space is sufficient to influence human social cognition.
No comments:
Post a Comment