Friday, December 24, 2010

Google's body browser

I've been enjoying playing a bit with Google's new 3-D body browser that lets you proceed through body layers (muscles,organs, bones, circulatory and nervous systems), clicking on a part or area to see it outlined and identified. It is still very much under development, with the nervous system and brain yet to be fully engaged. When it's further along, it should be a tremendously convenient look up tool. You need a web browser that supports WebGL, such as Chrome or Firefox 4 Beta. You can share the exact scene you are viewing by copying and pasting the URL (the sciatic nerve, for example).

Thursday, December 23, 2010

Why diets fail.

Pankevich et al. offer observations that might explain why weight lost during an effective diet is usually regained - dieting makes the brain more sensitive to stress and the rewards of high-fat, high-calorie treats. These brain changes last long after the diet is over and prod otherwise healthy individuals to binge eat under pressure. Part of the abstract:
Long-term weight management by dieting has a high failure rate. Pharmacological targets have focused on appetite reduction, although less is understood as to the potential contributions of the stress state during dieting in long-term behavioral modification. In a mouse model of moderate caloric restriction in which a 10–15% weight loss similar to human dieting is produced, we examined physiological and behavioral stress measures. After 3 weeks of restriction, mice showed significant increases in immobile time in a tail suspension test and stress-induced corticosterone levels. Increased stress was associated with brain region-specific alterations of corticotropin-releasing factor expression and promoter methylation, changes that were not normalized with refeeding. Similar outcomes were produced by high-fat diet withdrawal, an additional component of human dieting. In examination of long-term behavioral consequences, previously restricted mice showed a significant increase in binge eating of a palatable high-fat food during stress exposure...In humans, such changes would be expected to reduce treatment success by promoting behaviors resulting in weight regain, and suggest that management of stress during dieting may be beneficial in long-term maintenance.

Sigh....

Coming upon cheerful news like the following makes me want to dig a hole, get in it, and pull it in after myself....

40 Percent Of Americans Still Believe In Creationism
Creationists And Climate Deniers Take On Teaching Climate Science In Schools

Wednesday, December 22, 2010

Regulation of distress better with thicker prefrontal cortex.

Ventral prefrontal cortex activity correlates with suppression of amygdala reactivity to emotionally challenging stimuli, presumably reflecting higher-order cognitive evaluation of negative stimuli being brought into play. (The amygdala influences a broad range of physiological and behavioral responses associated with emotion, with the left amygdala being particularly responsive to negative facial expressions.) Foland-Ross et al. have now shown that prefrontal grey matter (nerve cell containing cortical layer) thickness inversely correlates with amygdala reactivity. Greater ventromedial prefrontal cortical gray matter thickness was associated with greater reduction of activation in the left amygdala during affect labeling, a cognitive task that had previously been shown to dampen amygdala response.

In other words, if you have a thicker layer of prefrontal nerve cells, you might be less prone to emotional upset from unpleasant stimuli.

Out of our brains - extended mind continues

As a followup to my Nov. 3 post on critiques of Andy Clark's extended mind ideas (which drew 20 comments) I wanted to pass on this further Clark commentary and a sequel, pointed out to me by a loyal MindBlog reader, in which Clark tries to clarify his ideas.

Tuesday, December 21, 2010

Reducing depression with light stimulation of medial prefrontal cortex

In mice, to be sure.....Brain imaging and direct brain stimulation have implicated the prefrontal cortex in clinical depression in humans and mice, and now a study by Covington et al. confirms in both that suppression of gene activities associated with nerve activity in medial prefrontal cortex are associated with depressive behavior. In mice they used a genetic trick to introduce light activated channel proteins into nerve cells membranes in this area, and found that light stimulation which enhanced nerve activity had potent antidepressant-like effects. Here is their abstract:
Brain stimulation and imaging studies in humans have highlighted a key role for the prefrontal cortex in clinical depression; however, it remains unknown whether excitation or inhibition of prefrontal cortical neuronal activity is associated with antidepressant responses. Here, we examined cellular indicators of functional activity, including the immediate early genes (IEGs) zif268 (egr1), c-fos, and arc, in the prefrontal cortex of clinically depressed humans obtained postmortem. We also examined these genes in the ventral portion of the medial prefrontal cortex (mPFC) of mice after chronic social defeat stress, a mouse model of depression. In addition, we used viral vectors to overexpress channel rhodopsin 2 (a light-activated cation channel) in mouse mPFC to optogenetically drive "burst" patterns of cortical firing in vivo and examine the behavioral consequences. Prefrontal cortical tissue derived from clinically depressed humans displayed significant reductions in IEG expression, consistent with a deficit in neuronal activity within this brain region. Mice subjected to chronic social defeat stress exhibited similar reductions in levels of IEG expression in mPFC. Interestingly, some of these changes were not observed in defeated mice that escape the deleterious consequences of the stress, i.e., resilient animals. In those mice that expressed a strong depressive-like phenotype, i.e., susceptible animals, optogenetic stimulation of mPFC exerted potent antidepressant-like effects, without affecting general locomotor activity, anxiety-like behaviors, or social memory. These results indicate that the activity of the mPFC is a key determinant of depression-like behavior, as well as antidepressant responses.

Time, space, and number - evolved brain computations

Dehaene and Brannon introduce a special (and open access) issue of Trends in Cognitive Science on Time, space, and number.
What do the representations of space, time and number share that might justify their joint presence in a special issue of TICS? In his Critique of Pure Reason, Immanuel Kant famously argued that they provide ‘a priori intuitions’ that precede and structure how humans experience the environment. Indeed, these concepts are so basic to any understanding of the external world that it is hard to imagine how any animal species could survive without having mechanisms for spatial navigation, temporal orienting (e.g. time-stamped memories) and elementary numerical computations (e.g. choosing the food patch with the largest expected return). In the course of their evolution, humans and many other animal species might have internalized basic codes and operations that are isomorphic to the physical and arithmetic laws that govern the interaction of objects in the external world. The articles in this special issue all support this point of view: from grid cells to number neurons, the richness and variety of mechanisms by which animals and humans, including infants, can represent the dimensions of space, time and number is bewildering and suggests evolutionary processes and neural mechanisms by which Kantian intuitions might universally arise.

Monday, December 20, 2010

Culturomics

This is a bit mind-blowing. Here is the New York Times article, here is the Science summary by Bohannon, and here is the abstract and the article PDF of the collective effort by Google and academic researchers (including Steven Pinker, Martin Nowak, etc.), and here is the PDF of their supplement giving the details.  The abstract:

We constructed a corpus of digitized texts containing about 4% of all books (5,195,769 digitized books) ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of "culturomics", focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame, censorship, and historical epidemiology. "Culturomics" extends the boundaries of rigorous quantitative inquiry to a wide array of new phenomena spanning the social sciences and the humanities.
Clips from the Bohannon review:
The researchers have revealed 500,000 English words missed by all dictionaries, tracked the rise and fall of ideologies and famous people, and, perhaps most provocatively, identified possible cases of political suppression unknown to historians...tracking the ebb and flow of “Sigmund Freud” and “Charles Darwin” reveals an ongoing intellectual shift: Freud has been losing ground, and Darwin finally overtook him in 2005...the amount of data that Google Books offers...currently includes 2 trillion words from 15 million books, about 12% of every book in every language published since the Gutenberg Bible in 1450. By comparison, the human genome is a mere 3-billion-letter poem...the size of the English language has nearly doubled over the past century, to more than 1 million words. And vocabulary seems to be growing faster now than ever before.

"Me-We" - Obama and the passions

A great essay by Mark Lilla (Humanities Professor at Columbia University) in the NYTimes Sunday magazine. The conclusion:
...the shape of American politics over the past half-century has been determined by two great waves of passion: the first running from the Kennedy and Johnson administrations through the ’70s, the second running from the Reagan administration to the departure of George W. Bush. What dominated during the first wave was excitement about a New Frontier, hope for a just and Great Society, fear of nuclear war, a desire for greater social freedom — and confidence that government could accomplish much. In the next era the same passions, nearly as intense, would be successfully redirected by Ronald Reagan. Now the excitement was about privatization, hope was invested in economic growth, fears centered on the family and the greatest desire was for freedom from government.

The Great Recession and the Tea Party’s ire, directed at Democrats and Republicans alike, suggest that this second political dispensation is coming to an end and that Americans’ passions are ready to be redirected once again. Having been dealt a bad hand, President Obama may have only a slim chance of doing that, but he has absolutely none if he limits himself to appealing to people’s interests. That’s not been the American experience of change. In our politics, history doesn’t happen when a leader makes an argument, or even strikes a pose. It happens when he strikes a chord. And you don’t need charts and figures to do that; in fact they get in the way. You only need two words.

George Plimpton used to tell the story of Muhammad Ali going to Harvard one year to give an address. At the end of his speech, someone called out to him, “Give us a poem!” He paused, stretched out his arms to the audience and delivered what Plimpton said was the shortest poem in the English language:

ME [pause]

WE!

Friday, December 17, 2010

Female genes respond to winners versus losers

In a cichlid fish, that is, but I'll bet it's happening in humans too. When a male mate a female has chosen is a winner in a male-male competition, reproductive center genes are activated; when he is a loser, anxiety-like response center genes are activated. From Russ Fernald's group:
Females should be choosier than males about prospective mates because of the high costs of inappropriate mating decisions. Both theoretical and empirical studies have identified factors likely to influence female mate choices. However, male–male social interactions also can affect mating decisions, because information about a potential mate can trigger changes in female reproductive physiology. We asked how social information about a preferred male influenced neural activity in females, using immediate early gene (IEG) expression as a proxy for brain activity. A gravid female cichlid fish (Astatotilapia burtoni) chose between two socially equivalent males and then saw fights between these two males in which her preferred male either won or lost. We measured IEG expression levels in several brain nuclei including those in the vertebrate social behavior network (SBN), a collection of brain nuclei known to be important in social behavior. When the female saw her preferred male win a fight, SBN nuclei associated with reproduction were activated, but when she saw her preferred male lose a fight, the lateral septum, a nucleus associated with anxiety, was activated instead. Thus social information alone, independent of actual social interactions, activates specific brain regions that differ significantly depending on what the female sees. In female brains, reproductive centers are activated when she chooses a winner, and anxiety-like response centers are activated when she chooses a loser. These experiments assessing the role of mate-choice information on the brain using a paradigm of successive presentations of mate information suggest ways to understand the consequences of social information on animals using IEG expression.

Thursday, December 16, 2010

Why women apologize more than men.

Schumann and Ross note that it is not because men have more fragile egos, but because they have a higher threshold for what constitutes offensive behavior.
Despite wide acceptance of the stereotype that women apologize more readily than men, there is little systematic evidence to support this stereotype or its supposed bases (e.g., men’s fragile egos). We designed two studies to examine whether gender differences in apology behavior exist and, if so, why. In Study 1, participants reported in daily diaries all offenses they committed or experienced and whether an apology had been offered. Women reported offering more apologies than men, but they also reported committing more offenses. There was no gender difference in the proportion of offenses that prompted apologies. This finding suggests that men apologize less frequently than women because they have a higher threshold for what constitutes offensive behavior. In Study 2, we tested this threshold hypothesis by asking participants to evaluate both imaginary and recalled offenses. As predicted, men rated the offenses as less severe than women did. These different ratings of severity predicted both judgments of whether an apology was deserved and actual apology behavior.

Wednesday, December 15, 2010

Amazing moving graphic - history of well-being

This was pointed to in David Brooks NY Times column yesterday.

Turning back aging - The 91 year old athlete

I've been meaning to pass on some nuggets from an NYTimes Magazine article by Bruce Grierson, which tells the story of Olga Kotelko, a remarkable 91 year old woman who has shattered many world records in her Masters Competition age group. He references a number of studies and observations on aging that I was unaware of, particularly mentioning muscle physiologist Tanja Taivassalo. This first quote below gave me a bit of pause (since I am 68 years old, and in extremely good shape)...
We start losing wind in our 40s and muscle tone in our 50s. Things go downhill slowly until around age 75, when something alarming tends to happen...“There’s a slide I show in my physical-activity-and-aging class,” Taivassalo says. “You see a shirtless fellow holding barbells, but I cover his face. I ask the students how old they think he is. I mean, he could be 25. He’s just ripped. Turns out he’s 67. And then in the next slide there’s the same man at 78, in the same pose. It’s very clear he’s lost almost half of his muscle mass, even though he’s continued to work out. So there’s something going on.” But no one knows exactly what. Muscle fibers ought in theory to keep responding to training. But they don’t. Something is applying the brakes.
This seems not to be happening in Olga Kotelko, and a number of studies are looking at processes that seem to stall the natural processes of aging.
Exercise has been shown to add between six and seven years to a life span...Two recent studies involving middle-aged runners suggest that the serious mileage they were putting in, over years and years, had protected them at the chromosomal level. It appears that exercise may stimulate the production of telomerase, an enzyme that maintains and repairs the little caps on the ends of chromosomes that keep genetic information intact when cells divide. That may explain why older athletes aren’t just more cardiovascularly fit than their sedentary counterparts — they are more free of age-related illness in general.

Mark Tarnopolsky (professor of pediatrics and medicine at McMaster University in Hamilton) maintains that exercise in particular seems to activate a muscle stem cell called a satellite cell. With the infusion of these squeaky-clean cells into the system, the mitochondria seem to rejuvenate. (The phenomenon has been called “gene shifting.”) If this is right, exercise in older adults can roll back the odometer. After six months of twice weekly strength exercise training, Tarnopolsky has shown that the biochemical, physiological and genetic signature of older muscle is “turned back” nearly 15 or 20 years.

Tuesday, December 14, 2010

The truth wears off...

Jonah Lehrer has a fascinating article in the recent New Yorker which describes in detail a disturbing trend:
..all sorts of well-established multiply confirmed findings have started to look increasingly uncertain, It's as if our facts were losing their truth: claims that have been enshrined in textbooks are suddenly unprovable. This phenomenon doesn't yet have an official name, but it's occurring across a wide range of fields, from psychology to ecology. In the field of medicine the phenomenon seems extremely widespread, affecting not only antipsychotics but also therapies from cardiac stents to Vitamin E and antidepressants...a forthcoming analysis demonstrates that the efficacy of antidepressants has gone down as much as three-fold in recent decades.
Lehrer tells the story of a number of serious scientists who have reported statistically significant effects with appropriate controls, only to find then disappear over time, seemingly iron-clad results that on repetition seemed to fade away. One example is "verbal overshadowing", subjects being shown a face and asked to describe it being much less likely to recognize the face when shown it later than those who had simply looked at it. Another theory that has fallen apart is the claim that females use symmetry as a proxy for reproductive fitness of males. A 2005 study found that of the 50 most cited clinical research studies (with randomized control trials), almost half were subsequently not replicated or had their effects significantly downgraded, and these studies had guided clinical practice (hormone replacement therapy for menopausal women, low-dose aspirin to prevent heart attacks and strokes).

It is not entirely clear why this is happening, and several possibilities are mentioned:
-statistical regression to the mean, an early statistical fluke gets canceled out.
-publication bias on the part of journals, who prefer positive data over null results
-selective reporting, or significance chasing.  A review found that over 90% of psychological studies reporting statistically significant data, i.e. odds of being produced by chance less than 5% of the time, found the effect they were looking for. (One classic example of selective reporting concerns testing acupuncture in Asian countries - largely positive data - versus Western countries - less than half confirming. See today's other posting on MindBlog).

The problem of selective reporting doesn't derive necessarily from dishonesty, but from the fundamental cognitive flaw that we like proving ourselves right and hate being wrong.  The decline effect may actually be a decline of illusion.

We shouldn't throw out the baby with the bath water, as Lehrer notes in a subsequent blog posting. These problems don't mean we shouldn't believe in evolution or climate change:
One of the sad ironies of scientific denialism is that we tend to be skeptical of precisely the wrong kind of scientific claims. In poll after poll, Americans have dismissed two of the most robust and widely tested theories of modern science: evolution by natural selection and climate change. These are theories that have been verified in thousands of different ways by thousands of different scientists working in many different fields. (This doesn’t mean, of course, that such theories won’t change or get modified – the strength of science is that nothing is settled.) Instead of wasting public debate on creationism or the rhetoric of Senator Inhofe, I wish we’d spend more time considering the value of spinal fusion surgery, or second generation antipsychotics, or the verity of the latest gene association study.

More on efficacy/mechanism of acupuncture...

A loyal MindBlog reader has pointed me to a rather thorough review of numerous studies of traditional chinese versus sham acupuncture that in balance suggest that the two are equally effective in relieving musculoskeletal pain and osteoarthritis. The review then does a thorough discussion of whether acupuncture is a placebo effect and concludes that most of the benefits of acupuncture for pain syndromes result from the treatment ritual and patient–provider interaction - which meets the definition of a placebo effect.

Monday, December 13, 2010

The weather - why I am in Florida

A personal note.... The photos below are iPhone camera shots of the patio of my Wisconsin home where the temperature is 1 degree farenheit (taken by my partner there) and the shot I've just taken from my work desk in the Fort Lauderdale condo I use as an office while here November through March.  People here are complaining about the unusual cold (high of 62 today)!

Imagining eating reduces actual eating

We are just like Pavlov's dogs, in that thinking about a treat like eating chocolate enhances our desire for it and motivation to get it. After we have eaten some, our desire wanes, or habituates. Morewedge et al. make the fascinating observation that imagining the repetitive comsumption of the treat reduces the amount we actually eat:
The consumption of a food typically leads to a decrease in its subsequent intake through habituation—a decrease in one’s responsiveness to the food and motivation to obtain it. We demonstrated that habituation to a food item can occur even when its consumption is merely imagined. Five experiments showed that people who repeatedly imagined eating a food (such as cheese) many times subsequently consumed less of the imagined food than did people who repeatedly imagined eating that food fewer times, imagined eating a different food (such as candy), or did not imagine eating a food. They did so because they desired to eat it less, not because they considered it less palatable. These results suggest that mental representation alone can engender habituation to a stimulus.

Sleights of Mind

I attended the annual meeting of the Society for the Scientific Study of Consciousness in 2007, sending a few MindBlog dispaches from the event, and several subsequent posts.  It was organized by Stephen Macknik and Susana Martinez-Conde, both neuroscientists at the Barrow Neurological Institute in Phoenix.  Over a number of years they have studied how the tricks of magicians can be explained by classic and recent studies in cognitive neuroscience.  They organized a fascinating session at the meeting in which several scientists and four prominent magicians showed and discussed their craft. 

Macknik and Martinez-Conde have now joined with science journalist Sandra Blakesless (whose book "The Body has a Mind of its Own" I reviewed in a 2007 MindBlog post) to offer an engaging book: "Sleights of Mind."  I've just finished the advance copy I was sent, found it a very interesting and enjoyable read,  and plan to make it my seasonal gift to a number of friends.  They describe a large number of magical tricks and illusions, following each with an explanatory sections (prefaced by "spoiler alert") that list visual (and other sensory) afterimages, adaptations, habituations, cognitive and sensory short cuts, etc.  that explain why we can so easily be tricked.

Friday, December 10, 2010

The one night stand gene?

An amusing article in a recent PLoS One by Garcia et al makes me wonder whether we soon may be requiring prospective mates to reveal not only their HIV status but also the number of tandem repeats in their dopamine receptor gene. Genetic tweaking of the receptor for the "feel good" neurotransmitter dopamine may be all it takes to ramp up sexual promiscuity and infidelity (usual disclaimer: This does NOT mean we are talking about a 'gene' for promiscuity, in spite of the title of this post). They rounded up 181 college students, asked them to answer a questionnaire about their sexual habits along with other proclivities, such as cigarette smoking and the tendency to take risks.  They also measured variable number tandem repeats (VNTR) polymorphism in exon III of the subjects dopamine D4 receptor gene (DRD4), which has been correlated with an array of behavioral phenotypes, particularly promiscuity and infidelity. They found that subjects having at least one 7-repeat allele (7R+) report a greater categorical rate of promiscuous sexual behavior (i.e., having ever had a “one-night stand”) and report a more than 50% increase in instances of sexual infidelity. (Genotypes were grouped as 7R+ (at least one allele 7-repeats or longer) or 7R- (both alleles less than 7-repeats); the 7R+ genotype was present in 24% of the sample.)

Thursday, December 09, 2010

Complete heresy: life based on arsenic instead of phosphorus??

I had a wrenching gut reaction to first glancing at the headlines suggesting that a bacterium had been found which could live on arsenic instead of phosphorus...  My university degrees were in biochemistry, and if one thing was certain in this world, it was the basic recipe for life anywhere would have to contain carbon, nitrogen, oxygen, and phosphorus. Phosphorus forms the backbone of strands of DNA and RNA, as well as ATP and NAD, two molecules key to energy transfer in a cell. Arsenic is one row down in the periodic table from phosphorus and so does have similar chemical properties. It is a poison for us because it inserts into proteins and nucleic acids where phosphorus should, and screws up their action. A look at the article by Wolf-Simon et al., however, made me breathe a bit easier, because what they has actually done is to take a bacterium that lives under extreme conditions, in Mono Lake, located in eastern California, which is a hypersaline and alkaline water body with high dissolved arsenic concentrations. They grew the bacteria in increasingly high levels of arsenic (radioactively labeled), while decreasing phosphorus levels, and found arsenic incorporation into protein, lipid, nucleic acid, and metabolite fractions of the cells. So... these creatures are certainly different from us, they have evolved to be able to deal with arsenic. From Pennisi's review of this work:
Wolfe-Simon speculates that organisms like GFAJ-1 could have thrived in the arsenic-laden hydrothermal vent–like environments of early Earth, where some researchers think life first arose, and that later organisms may have adapted to using phosphorus. Others say they'll refrain from such speculation until they see more evidence of GFAJ-1's taste for arsenic and understand how the DNA and other biomolecules can still function with the element incorporated. “As in this type of game changer, some people will rightly want more proof,” says microbiologist Robert Gunsalus of the University of California, Los Angeles. “There is much to do in order to firmly put this microbe on the biological map.”