The previous post in this series, 'A New View of Human Nature,' covering Chapter 8 of Barrett's book brought to a close her account of our brains operate by prediction and construction, rewiring themselves through experience. The remaining chapters of the book consider some implications of shifting to this constructionist view of how emotions are formed, away from the essentialist (classical) view. In the last fews posts of this series on Barrett's book, I'm offering only a very truncated sampling of these chapters dealing with emotional well-being, the law, and non human animals.
Chapter 9 Mastering Your Emotions
This chapter begins with a long list of self-help nostrums on taking care of your body, becoming more emotionally intelligent, increasing emotional granularity, exercising, etc. I pass on just a few bits:
The fiction of the self, paralleling the Buddhist idea, is that you have some enduring essence that makes you who you are. You do not. I speculate that your self is constructed anew in every moment by the same predictive, core systems that construct emotions, including our familiar pair of networks (interoceptive and control), among others, as they categorize the continuous stream of sensation from your body and the world. As a matter of fact, a portion of the interoceptive network, called the default mode network, has been called the “self system.” It consistently increases in activity during self-reflection. If you have atrophy in your default mode network, as happens in Alzheimer’s disease, you eventually lose your sense of self.
Deconstructing the self offers a new inspiration for how to become the master of your emotions. By tweaking your conceptual system and changing your predictions, you not only change your future experiences; you can actually change your “Self.”
Mindfulness meditation, just one type of many, teaches you to stay alert and present in the moment but to observe sensations as they come and go, non-judgmentally.* This state (which requires tremendous practice) reminds me of the quiet, alert state of newborn babies when they observe the world, their brains comfortably awash in prediction error, with no anxiety in sight. They experience sensations and release them.
Meditation has a potent effect on brain structure and function, though scientists have not sorted out the exact details yet. Key regions in the interoceptive and control networks are larger for meditators, and connections between these regions are stronger. This matches what we might expect, since the interoceptive network is critical to constructing mental concepts and representing physical sensations from the body, and the control network is critical to regulating categorization. In some studies, we see stronger connections even after only a few hours of training. Other studies find that meditation reduces stress, improves the detection and processing of prediction error, facilitates recategorization (termed “emotion regulation”), and reduces unpleasant affect, although the findings are often inconsistent from one study to the next because not all the experiments have been well-controlled.
Whether you cultivate awe, meditate, or find other ways to deconstruct your experience into physical sensations, recategorization is a critical tool for mastering your emotions in the moment. When you feel bad, treat yourself like you have a virus, rather than assuming that your unpleasant feelings mean something personal. Your feelings might just be noise. You might just need some sleep.
You are a remarkable animal who can create purely mental concepts that influence the state of your body. The social and the physical are intimately linked via your body and your brain, and your ability to move effectively between social and physical depends on a set of skills that you can learn. So grow your emotion concepts. Cultivate opportunities for your brain to wire itself to the realities of your social world. If you feel unpleasant in the moment, then deconstruct or recategorize your experiences. And realize that your perceptions of others are just guesses and not facts.
Chapter 10 Emotion and Illness
…researchers are moving away from a classical view of different illnesses with distinct essences. They instead focus on a set of common ingredients that leave people vulnerable to these various disorders, such as genetic factors, insomnia, and damage to the interoceptive network or key hubs in the brain (chapter 6). If these areas become damaged, the brain is in big trouble: depression, panic disorder, schizophrenia, autism, dyslexia, chronic pain, dementia, Parkinson’s disease, and attention deficit hyperactivity disorder are all associated with hub damage.
My view is that some major illnesses considered distinct and “mental” are all rooted in a chronically unbalanced body budget and unbridled inflammation. We categorize and name them as different disorders, based on context, much like we categorize and name the same bodily changes as different emotions. If I’m correct, then questions like, “Why do anxiety and depression frequently co-occur?” are no longer mysteries because, like emotions, these illnesses do not have firm boundaries in nature.
Stress - stress doesn’t come from the outside world. You construct it…stress is a population of diverse instances. It is a concept, just like “Happiness” or “Fear,” that you apply to construct experiences from an imbalanced body budget. You construct instances of “Stress” via the same brain mechanisms that construct emotion. In each case, your brain issues predictions about your body budget in relation to the outside world and makes meaning. These predictions issue from your interoceptive network and descend along the same pathways from the brain to the body. In the opposite direction, the ascending pathways that carry sensory inputs from the body to the brain are also the same for stress and emotion. And the same pair of networks, interoceptive and control, play their same roles. (Emotion and stress researchers rarely recognize these similarities, and tend to ask how stress influences emotion and vice versa, as if stress and emotion are independent.)
Pain is an experience that occurs not only from physical damage but also when your brain predicts damage is imminent. If nociception works by prediction, as does every other sensory system in the brain, then you construct instances of pain out of more basic parts using your concept of “Pain.”….How and why do so many people experience ongoing pain when their bodies appear to have no physical damage? To answer that question, think about what would happen if your brain issued unnecessary predictions of pain and then ignored prediction error to the contrary. You would genuinely experience pain for no discernable reason. This is much like your experience when the blobby picture in chapter 2 became a bee, as you genuinely perceived lines that didn’t exist. Your brain ignored sensory input, maintaining that its predictions are reality. Apply this example to pain and the result is a plausible model of chronic pain: errant predictions without correction..It’s similar to phantom limb syndrome, when an amputee can still feel his missing arm or leg because his brain keeps issuing predictions about it.
Emotion, acute pain, chronic pain, and stress are constructed in the same networks, the same neural pathways to and from the body, and most likely the same primary sensory region of cortex, so it is completely plausible that we distinguish emotion and pain by concept—that is, via the concepts the brain applies to make sense of bodily sensations. Chronic pain is likely a misapplication of the concept “Pain” by your brain, as it constructs the experience of pain without injury or threat to your tissue. Chronic pain seems to be a tragic case of predicting poorly and receiving misleading data from your body.
To many scientists and physicians, depression remains a disease of the mind. It’s classified as a disorder of affect and often blamed on negative thinking: You’re too hard on yourself, or have too many self-defeating, catastrophic thoughts. Or perhaps traumatic events trigger depression, particularly if your genes make you vulnerable. Or maybe you don’t regulate your emotions well, making you too responsive to negative events and too unresponsive to positive ones. All of these explanations assume that thinking controls feeling—the old “triune brain” idea….The traditional view of depression is that negative thoughts cause negative feelings. I’m suggesting it’s the other way around. Your feelings right now drive your next thought, as well as your perceptions, as predictions. So a depressed brain relentlessly keeps making withdrawals from the is restored. These changes are consistent with the idea of reducing the excessive predictions. We might also treat depression by letting in more prediction error, say, by asking people to keep a diary of their positive experiences, which can ease the drain on the body budget. The problem, of course, is that no treatment works for everyone, and there are some people for whom no treatments work.
Anxiety is still a puzzle being unraveled,* but one thing seems certain: it is yet another disorder of prediction and prediction error across these two networks. The neural pathways studied in anxiety for prediction and prediction error are also the same ones as for emotion, pain, stress, and depression.
Traditional research on anxiety disorders is founded on the old “triune brain” model, that cognition controls emotion. Your allegedly emotional amygdala is overactive, they say, and your so-called rational prefrontal cortex is failing to regulate it. This approach is still influential, even though the amygdala is not the home of any emotion, the prefrontal cortex does not house cognition, and emotion and cognition are whole-brain constructions that cannot regulate each other.
….I speculate that an anxious brain, in a sense, is the opposite of a depressed brain. In depression, prediction is dialed way up and prediction error way down, so you’re locked into the past. In anxiety, the metaphorical dial is stuck on allowing too much prediction error from the world, and too many predictions are unsuccessful. With insufficient prediction, you don’t know what’s coming around the next corner, and life contains a lot of corners. That’s classic anxiety.
Anxiety sufferers, for whatever reason, have weakened connections between several key hubs in the interoceptive network, including the amygdala. Some of these hubs also happen to sit in the control network. These weakened connections likely translate into an anxious brain that is clumsy at crafting predictions to match the immediate circumstances, and that fails to learn effectively from experience. You might predict threats needlessly, or create uncertainty by predicting imprecisely or not at all. In addition, your interoceptive inputs become even more noisy than usual when your body budget has been in the red for a while; as a consequence, your brain ignores them. These situations leave you open to a lot of uncertainty and a lot of prediction error that you can’t resolve. And uncertainty is more unpleasant and arousing than assured harm, because if the future is a mystery, you can’t prepare for it. For example, when people are seriously ill but have an excellent chance of recovery, they are less satisfied with life than people who know their disease is permanent.
We all walk a tightrope between the world and the mind, and between the natural and the social. Many phenomena that were once considered purely mental—depression, anxiety, stress, and chronic pain—can, in fact, be explained in biological terms. Other phenomena that were believed to be purely physical, like pain, are also mental concepts. To be an effective architect of your experience, you need to distinguish physical reality from social reality, and never mistake one for the other, while still understanding that the two are irrevocably entwined.