Showing posts with label AI. Show all posts
Showing posts with label AI. Show all posts

Monday, April 08, 2024

New protocols for uncertain times.

I want to point to a project launched by Venkatest Rao and others last year: “The Summer of Protocols.”  Some background for this project can be found in his essay “In Search of Hardness”.  Also,  “The Unreasonable Sufficiency of Protocols”  essay by Rao et al. is an excellent presentation of what protocols are about.  I strongly recommend that you read it if nothing else. 

Here is a description of the project: 

Over 18 weeks in Summer 2023, 33 researchers from diverse fields including architecture, law, game design, technology, media, art, and workplace safety engaged in collaborative speculation, discovery, design, invention, and creative production to explore protocols, boadly construed, from various angles.

Their findings, catalogued here in six modules, comprise a variety of textual and non-textual artifacts (including art works, game designs, and software), organized around a set of research themes: built environments, danger and safety, dense hypermedia, technical standards, web content addressability, authorship, swarms, protocol death, and (artificial) memory.
I have read through through Module One for 2003, and it is solid interesting deep dive stuff.  Module 2 is also available. Modules 3-6 are said to be 'coming soon’  (as of 4/4/24, four months into a year that has Summer of Protocols program 2024 already underway, with the deadline for proposals 4/12/24.)

Here is one clip from the “In Search of Hardness” essay:

…it’s only in the last 50 years or so, with the rise of communications technologies, especially the internet and container shipping, and the emergence of unprecedented planet-scale coordination problems like climate action, that protocols truly came into focus as first-class phenomena in our world; the sine qua non of modernity. The word itself is less than a couple of centuries old.

And it wasn’t until the invention of blockchains in 2009 that they truly came into their own as phenomena with their own unique technological and social characteristics, distinct from other things like machines, institutions, processes, or even algorithms.

Protocols are engineered hardness, and in that, they’re similar to other hard, enduring things, ranging from diamonds and monuments to high-inertia institutions and constitutions.

But modern protocols are more than that. They’re not just engineered hardness, they are programmable, intangible hardness. They are dynamic and evolvable. And we hope they are systematically ossifiable for durability. They are the built environment of digital modernity.”


Friday, April 05, 2024

Our seduction by AI’s believable human voice.

 I want to point to an excellent New Yorker article by Patrick House titled  “The Lifelike Illusion of A.I.”  The article strikes home for me, for when a Chat Bot responds to one of my prompts using the pronoun “I”  I unconsciously attribute personhood to the machine, forgetting that this is a cheap trick used by programmers of large language model to increase the plausibility of responses.

House starts off his article by describing the attachments people formed with the Furby, an animatronic toy resembling a small owl, and Pleo, an animatronic toy dinosaur. Both use a simple set of rules to make the toys appear to be alive. Furby’s eyes move up and down in a way meant to imitate an infant’s eye movements while scanning a parent’s face. Pleo mimes different emotional behaviors when touched differently.
For readers who hit the New Yorker paywall when they click the above link, here are a few clips from the article that I think get across the main points:
“A Furby possessed a pre-programmed set of around two hundred words across English and “Furbish,” a made-up language. It started by speaking Furbish; as people interacted with it, the Furby switched between its language dictionaries, creating the impression that it was learning English. The toy was “one motor—a pile of plastic,” Caleb Chung, a Furby engineer, told me. “But we’re so species-centric. That’s our big blind spot. That’s why it’s so easy to hack humans.” People who used the Furby simply assumed that it must be learning.”
Chung considers Furby and Pleo to be early, limited examples of artificial intelligence—the “single cell” form of a more advanced technology. When I asked him about the newest developments in A.I.—especially the large language models that power systems like ChatGPT—he compared the intentional design of Furby’s eye movements to the chatbots’ use of the word “I.” Both tactics are cheap, simple ways to increase believability. In this view, when ChatGPT uses the word “I,” it’s just blinking its plastic eyes, trying to convince you that it’s a living thing.
We know that, in principle, inanimate ejecta from the big bang can be converted into thinking, living matter. Is that process really happening in miniature at server farms maintained by Google, Meta, and Microsoft? One major obstacle to settling debates about the ontology of our computers is that we are biased to perceive traces of mind and intention even where there are none. In a famous 1944 study, two psychologists, Marianne Simmel and Fritz Heider, had participants watch a simple animation of two triangles and a circle moving around one another. They then asked some viewers what kind of “person” each of the shapes was. People described the shapes using words like “aggressive,” “quarrelsome,” “valiant,” “defiant,” “timid,” and “meek,” even though they knew that they’d been watching lifeless lines on a screen.
…chatbots are designed by teams of programmers, executives, and engineers working under corporate and social pressures to make a convincing product. “All these writers and physicists they’re hiring—that’s game design,” he said. “They’re basically making levels.” (In August of last year, OpenAI acquired an open-world-video-game studio, for an undisclosed amount.) Like a game, a chatbot requires user input to get going, and relies on continued interaction. Its guardrails can even be broken using certain prompts that act like cheat codes, letting players roam otherwise inaccessible areas. Blackley likened all the human tinkering involved in chatbot training to the set design required for “The Truman Show,” the TV program within the eponymous film. Without knowing it, Truman has lived his whole life surrounded not by real people but by actors playing roles—wife, friend, milkman. There’s a fantasy that “we’ve taken our great grand theories of intelligence and baked them into this model, and then we turned it on and suddenly it was exactly like this,” Blackley went on. “It’s much more like Truman’s show, in that they tweak it until it seems really cool.”
A modern chatbot isn’t a Furby. It’s not a motor and a pile of plastic. It’s an analytic behemoth trained on data containing an extraordinary quantity of human ingenuity. It’s one of the most complicated, surprising, and transformative advances in the history of computation. A Furby is knowable: its vocabulary is limited, its circuits fixed. A large language model generates ideas, words, and contexts never before known. It is also—when it takes on the form of a chatbot—a digital metamorph, a character-based shape-shifter, fluid in identity, persona, and design. To perceive its output as anything like life, or like human thinking, is to succumb to its role play.



Friday, March 29, 2024

How communication technology has enabled the corruption of our communication and culture .

I pass on two striking examples from today’s New York Times, with few clips of text from each:

A.I.-Generated Garbage Is Polluting Our Culture:

(You really should read the whole article...I've given up on trying to assemble clips of text that get across the whole message, and pass on these bits towards the end of the article:)

....we find ourselves enacting a tragedy of the commons: short-term economic self-interest encourages using cheap A.I. content to maximize clicks and views, which in turn pollutes our culture and even weakens our grasp on reality. And so far, major A.I. companies are refusing to pursue advanced ways to identify A.I.’s handiwork — which they could do by adding subtle statistical patterns hidden in word use or in the pixels of images.

To deal with this corporate refusal to act we need the equivalent of a Clean Air Act: a Clean Internet Act. Perhaps the simplest solution would be to legislatively force advanced watermarking intrinsic to generated outputs, like patterns not easily removable. Just as the 20th century required extensive interventions to protect the shared environment, the 21st century is going to require extensive interventions to protect a different, but equally critical, common resource, one we haven’t noticed up until now since it was never under threat: our shared human culture.
Is Threads the Good Place?:

Once upon a time on social media, the nicest app of them all, Instagram, home to animal bloopers and filtered selfies, established a land called Threads, a hospitable alternative to the cursed X,..Threads would provide a new refuge. It would be Twitter But Nice, a Good Place where X’s liberal exiles could gather around for a free exchange of ideas and maybe even a bit of that 2012 Twitter magic — the goofy memes, the insider riffing, the meeting of new online friends

...And now, after a mere 10 months, we can see exactly what we built: a full-on bizarro-world X, handcrafted for the left end of the political spectrum, complete with what one user astutely labeled “a cult type vibe.” If progressives and liberals were provoked by Trumpers and Breitbart types on Twitter, on Threads they have the opportunity to be wounded by their own kind...Threads’ algorithm seems precision-tweaked to confront the user with posts devoted to whichever progressive position is slightly lefter-than-thou....There’s some kind of algorithm that’s dusting up the same kind of outrage that Twitter had.Threads feels like it’s splintering the left.

The fragmentation of social media may have been as inevitable as the fragmentation of broadcast media. Perhaps also inevitable, any social media app aiming to succeed financially must capitalize on the worst aspects of social behavior. And it may be that Hobbes, history’s cheery optimist, was right: “The condition of man is a condition of war of every one against every one.” Threads, it turns out, is just another battlefield.


 

Wednesday, March 20, 2024

Fundamentally changing the nature of war.

I generally try to keep a distance from 'the real world' and apocalyptic visions of what AI might do, but I decided to pass on some clips from this technology essay in The Wall Street Journal that makes some very plausible predictions about the future of armed conflicts between political entities:

The future of warfare won’t be decided by weapons systems but by systems of weapons, and those systems will cost less. Many of them already exist, whether they’re the Shahed drones attacking shipping in the Gulf of Aden or the Switchblade drones destroying Russian tanks in the Donbas or smart seaborne mines around Taiwan. What doesn’t yet exist are the AI-directed systems that will allow a nation to take unmanned warfare to scale. But they’re coming.

At its core, AI is a technology based on pattern recognition. In military theory, the interplay between pattern recognition and decision-making is known as the OODA loop— observe, orient, decide, act. The OODA loop theory, developed in the 1950s by Air Force fighter pilot John Boyd, contends that the side in a conflict that can move through its OODA loop fastest will possess a decisive battlefield advantage.

For example, of the more than 150 drone attacks on U.S. forces since the Oct. 7 attacks, in all but one case the OODA loop used by our forces was sufficient to subvert the attack. Our warships and bases were able to observe the incoming drones, orient against the threat, decide to launch countermeasures and then act. Deployed in AI-directed swarms, however, the same drones could overwhelm any human-directed OODA loop. It’s impossible to launch thousands of autonomous drones piloted by individuals, but the computational capacity of AI makes such swarms a possibility.

This will transform warfare. The race won’t be for the best platforms but for the best AI directing those platforms. It’s a war of OODA loops, swarm versus swarm. The winning side will be the one that’s developed the AI-based decision-making that can outpace their adversary. Warfare is headed toward a brain-on-brain conflict.

The Department of Defense is already researching a “brain-computer interface,” which is a direct communications pathway between the brain and an AI. A recent study by the RAND Corporation examining how such an interface could “support human- machine decision-making” raised the myriad ethical concerns that exist when humans become the weakest link in the wartime decision-making chain. To avoid a nightmare future with battlefields populated by fully autonomous killer robots, the U.S. has insisted that a human decision maker must always remain in the loop before any AI-based system might conduct a lethal strike.

But will our adversaries show similar restraint? Or would they be willing to remove the human to gain an edge on the battlefield? The first battles in this new age of warfare are only now being fought. It’s easy to imagine a future, however, where navies will cease to operate as fleets and will become schools of unmanned surface and submersible vessels, where air forces will stand down their squadrons and stand up their swarms, and where a conquering army will appear less like Alexander’s soldiers and more like a robotic infestation.

Much like the nuclear arms race of the last century, the AI arms race will define this current one. Whoever wins will possess a profound military advantage. Make no mistake, if placed in authoritarian hands, AI dominance will become a tool of conquest, just as Alexander expanded his empire with the new weapons and tactics of his age. The ancient historian Plutarch reminds us how that campaign ended: “When Alexander saw the breadth of his domain, he wept, for there were no more worlds to conquer.”

Elliot Ackerman and James Stavridis are the authors of “2054,” a novel that speculates about the role of AI in future conflicts, just published by Penguin Press. Ackerman, a Marine veteran, is the author of numerous books and a senior fellow at Yale’s Jackson School of Global Affairs. Admiral Stavridis, U.S. Navy (ret.), was the 16th Supreme Allied Commander of NATO and is a partner at the Carlyle Group.

 


Thursday, March 14, 2024

An inexpensive Helium Mobile 5G cellphone plan that pays you to use it?

This is a followup to the previous post describing my setting up a G5 hotspot on Helium’s decentralized 5G infrastructure that earns MOBILE tokens. The cash value of the MOBILE tokens earned since July 2022 is  ~7X the cost of the equipment needed to generate them.

Now I want to put down further facts I want to document for my future self and MindBlog’s techie readers.

Recently Helium has introduced Helium Mobile, a cell phone plan using using this new 5G infrastructure which costs $20/month - much less expensive than other cellular providers like Verizon and ATT.  It has partnered with T-Mobile to fill in coverage areas its own 5G network hasn’t reached.

Nine days ago I downloaded the Helium Mobile app onto my iPhone 12 and set up an account with an eSIM and a new phone number, alongside my phone number of many years now in a Verizon account using a physical SIM card.  

My iPhone has been earning MOBILE tokens by sharing its location to allow better mapping of the Helium G5 network.  As I am writing this, the app has earned 3,346 Mobile tokens that could be sold and converted to $14.32 at this moment (the price of MOBILE, like other cryptocurrencies, is very volatile).

If this earning rate continues (a big ‘if’), the cellular account I am paying $20/month for will be generating MOBILE tokens each month worth ~$45. The $20 monthly cell phone plan charge can be paid with MOBILE tokens, leaving $15/month passive income from my subscribing to Helium Mobile and allowing anonymous tracking of my phone as I move about.  (Apple sends a message every three days asking if I am sure I want to be allowing continuous tracking by this one App.)

So there you have it.  Any cautionary notes from techie readers about the cybersecurity implications of what I am doing would be welcome.  
 

Wednesday, March 13, 2024

MindBlog becomes a 5G cellular hotspot in the the low-priced ‘People’s Cell Phone Network’ - Helium Mobile

I am writing this post, as is frequently the case, for myself to be able to look up in the future, as well as for MindBlog techie readers who might stumble across it. It describes my setup of a G5 hotspot in the new Helium G5 Mobile network. A post following this one will describe my becoming a user of this new cell phone network by putting the Helium Mobile App on my iPhone using an eSIM.

This becomes my third post describing my involvement in the part of the crypto movement seeking to 'return power to the people.' It attempts to bypass the large corporations that are the current gate keepers and regulators of commerce and communications, and who are able to assert controls that are more in their own self interests and profits more than the public good. 

The two previous posts (here and here) describe my being seduced into crypto-world  by my son's having made a six hundred-fold return on investment by virtue of being one of the first cohort (during the "genesis" period) to put little black boxes and antennas on their window sills earning HNT (Helium blockchain tokens) using  LoRa 868 MHz antennas transmitting and receiving in the 'Internet of Things." I was a latecomer, and in the 22 months since June of 2022 have earned ~$200 on an investment of ~$500 of equipment. 

Helium next came up with the idea of setting up its own 5G cell phone network, called Helium Mobile. Individual Helium 5G Hotspots (small cell phone antennas) use Citizens Broadband Radio Service (CBRS) Radios to provide cellular coverage like that provided by telecom companies' more expensive networks of towers (CBRS is a wide broadcast 3.5Ghz band in the United States that does not require a spectrum license for use.)

In July of 2022, I decided to set up the Helium G5 hot spot equipment shown in the picture below to be in the genesis period for the establishment of this new Helium G5 cellular network.  I made my Abyssinian cat named Martin shown in front of the Bobber 500 miner the system administrator. The G5 antenna seen on the sill in the middle of window views ~170 degree of the southern sky. 

This system cost ~$2,500 and by early March 2024 has earned ~4.3 Million MOBILE tokens worth ~$18,000. As in a Ponzi scheme, most of the rewards are from the Genesis period, March 2024 earnings are ~ $45/week.  If this rate of earnings persists, this represents an annual ROI (return on investment)l of ~ 100%

The writing above is mine, and I decided just for the heck of it to recruit the assistance of several GPT engines (Google Gemini, Open AI ChatGPT-4, Anthropic Claude, and Microsoft Bing)  with the following prompt: 

Could you please act as Deric Bownds writing a post for his Blog, Deric’s MindBlog at http://mindblog.dericbownds.net. Describe my setting up of a Helium G5 hot spot using the Bobber 500 miner with FreedomFi CBRS and an internal antenna during the genesis period for the establishment of the new Helium G5 cellular network. 

The responses of Gemini and Bing were excited, poetic, lyrical, overwrought hyperbole, very much in the spirit of the cyber-world pitches one sees online. ChatGPT-4 (the best response) and Claude did toss up some interesting paragraphs, and below I pass on some of ChatGPT-4's slightly edited and redundant text. I would be more sanguine about all of hype over 'democratic participation (or at least my participation)' if I had not been completely flummoxed by the cacophony of  the Helium Discord Discord Server, YouTube videos, and the complexity of the HIP (Helium Improvement Protocol) votes that ratify new changes and improvements to the system.  

The Helium Network, known for pioneering decentralized wireless infrastructure, has embarked on an ambitious journey to extend its reach into 5G, leveraging the power of blockchain technology to create a community-powered network. The initiative is ambitious, aiming to democratize cellular connectivity, making it more accessible and affordable. This endeavor is not just about technology; it's about reimagining the fabric of our digital society.
This genesis period of the Helium G5 network represented a fascinating intersection of technology, psychology, and community. The network's decentralized nature challenges traditional models of infrastructure ownership and control, proposing a more democratic and participatory framework. It prompts us to reflect on our relationship with technology: Are we mere consumers, or can we also be contributors and custodians of the digital landscapes we inhabit?
As more individuals and communities join this initiative, setting up their hotspots and expanding the network, a unique form of collective intelligence emerges. This network, powered by the people, for the people, embodies a new kind of digital ecosystem—one that values collaboration over competition, and shared success over isolated gains.
The implications for our cognitive landscapes are profound. By democratizing access to 5G connectivity, we are not just enhancing our ability to communicate; we are potentially altering the way we think, learn, and engage with the world around us. The Helium G5 network invites us to imagine a future where connectivity is as natural and essential as the air we breathe, a future where our digital and physical realities are seamlessly intertwined.
The technology we embrace today shapes the world we live in tomorrow. Through initiatives like the Helium G5 network, we have the opportunity to craft a digital environment that reflects our highest aspirations for society—one that is open, inclusive, and fundamentally human.
In this journey of connectivity, we are all contributors, shaping the digital ethos of our era. The genesis of the Helium G5 network is not just a technical milestone; it is a call to action, inviting us to rethink our role in the digital age and to contribute to a network that embodies our collective values and aspirations.

The next post describes my becoming a customer of the new Helium Mobile cellular service plan costing $20/month.


 

Monday, March 11, 2024

How AI’s GPT engines work - Lanier’s forest and trees metaphor.

Jaron Lanier does a piece in The New Yorker titled "How to Picture A.I." (if you hit the paywall by clicking the link, try opening an 'empty tab" on your browser, then copy and paste in the URL that got you the paywall). I tried to do my usual sampling of small chunks of text to give the message, but found that very difficult, and so I pass several early paragraphs and urge you to read the whole article. Lanier's metaphors give me a better sense of what is going on in a GPT engine, but I'm still largely mystified. Anyway, here's some text:
In this piece, I hope to explain how such A.I. works in a way that floats above the often mystifying technical details and instead emphasizes how the technology modifies—and depends on—human input.
Let’s try thinking, in a fanciful way, about distinguishing a picture of a cat from one of a dog. Digital images are made of pixels, and we need to do something to get beyond just a list of them. One approach is to lay a grid over the picture that measures something a little more than mere color. For example, we could start by measuring the degree to which colors change in each grid square—now we have a number in each square that might represent the prominence of sharp edges in that patch of the image. A single layer of such measurements still won’t distinguish cats from dogs. But we can lay down a second grid over the first, measuring something about the first grid, and then another, and another. We can build a tower of layers, the bottommost measuring patches of the image, and each subsequent layer measuring the layer beneath it. This basic idea has been around for half a century, but only recently have we found the right tweaks to get it to work well. No one really knows whether there might be a better way still.
Here I will make our cartoon almost like an illustration in a children’s book. You can think of a tall structure of these grids as a great tree trunk growing out of the image. (The trunk is probably rectangular instead of round, since most pictures are rectangular.) Inside the tree, each little square on each grid is adorned with a number. Picture yourself climbing the tree and looking inside with an X-ray as you ascend: numbers that you find at the highest reaches depend on numbers lower down.
Alas, what we have so far still won’t be able to tell cats from dogs. But now we can start “training” our tree. (As you know, I dislike the anthropomorphic term “training,” but we’ll let it go.) Imagine that the bottom of our tree is flat, and that you can slide pictures under it. Now take a collection of cat and dog pictures that are clearly and correctly labelled “cat” and “dog,” and slide them, one by one, beneath its lowest layer. Measurements will cascade upward toward the top layer of the tree—the canopy layer, if you like, which might be seen by people in helicopters. At first, the results displayed by the canopy won’t be coherent. But we can dive into the tree—with a magic laser, let’s say—to adjust the numbers in its various layers to get a better result. We can boost the numbers that turn out to be most helpful in distinguishing cats from dogs. The process is not straightforward, since changing a number on one layer might cause a ripple of changes on other layers. Eventually, if we succeed, the numbers on the leaves of the canopy will all be ones when there’s a dog in the photo, and they will all be twos when there’s a cat.
Now, amazingly, we have created a tool—a trained tree—that distinguishes cats from dogs. Computer scientists call the grid elements found at each level “neurons,” in order to suggest a connection with biological brains, but the similarity is limited. While biological neurons are sometimes organized in “layers,” such as in the cortex, they are not always; in fact, there are fewer layers in the cortex than in an artificial neural network. With A.I., however, it’s turned out that adding a lot of layers vastly improves performance, which is why you see the term “deep” so often, as in “deep learning”—it means a lot of layers.

Wednesday, February 21, 2024

AI makes our humanity matter more than ever.

I want to pass on this link to an NYTimes Opinion Guest essay by Aneesh Raman, a work force expert at LinkedIn,  and

Minouche Shafik, who is now the president of Columbia University, said: “In the past, jobs were about muscles. Now they’re about brains, but in the future, they’ll be about the heart.”

The knowledge economy that we have lived in for decades emerged out of a goods economy that we lived in for millenniums, fueled by agriculture and manufacturing. Today the knowledge economy is giving way to a relationship economy, in which people skills and social abilities are going to become even more core to success than ever before. That possibility is not just cause for new thinking when it comes to work force training. It is also cause for greater imagination when it comes to what is possible for us as humans not simply as individuals and organizations but as a species.

Monday, February 19, 2024

Comparing how generative AI and living organisms generate meaning suggests future direction for AI development

I want to pass on this open source opinion article in Trends in Cognitive Sciences by Karl Friston, Andy Clark, and other prominent figures who study generative models of sentient behavior in living organisms.  (They suggest a future direction for AI development that is very similar to the vision described in the previous MindBlog post, which described a recent article by Venkatesh Rao.) Here are the highlights and abstract of the article.

Highlights

  • Generative artificial intelligence (AI) systems, such as large language models (LLMs), have achieved remarkable performance in various tasks such as text and image generation.
  • We discuss the foundations of generative AI systems by comparing them with our current understanding of living organisms, when seen as active inference systems.
  • Both generative AI and active inference are based on generative models, but they acquire and use them in fundamentally different ways.
  • Living organisms and active inference agents learn their generative models by engaging in purposive interactions with the environment and by predicting these interactions. This provides them with a core understanding and a sense of mattering, upon which their subsequent knowledge is grounded.
  • Future generative AI systems might follow the same (biomimetic) approach – and learn the affordances implicit in embodied engagement with the world before – or instead of – being trained passively.

Abstract

Prominent accounts of sentient behavior depict brains as generative models of organismic interaction with the world, evincing intriguing similarities with current advances in generative artificial intelligence (AI). However, because they contend with the control of purposive, life-sustaining sensorimotor interactions, the generative models of living organisms are inextricably anchored to the body and world. Unlike the passive models learned by generative AI systems, they must capture and control the sensory consequences of action. This allows embodied agents to intervene upon their worlds in ways that constantly put their best models to the test, thus providing a solid bedrock that is – we argue – essential to the development of genuine understanding. We review the resulting implications and consider future directions for generative AI.

Saturday, February 17, 2024

Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

I pass on the PDF of an article from the Gemini Team at Google. Here's the abstract describing a "working memory" system vastly greater than our own, that can hold 10 million tokens  (a 'token' is roughly 0.75 words):

In this report, we present the latest model of the Gemini family, Gemini 1.5 Pro, a highly compute-efficient multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. Gemini 1.5 Pro achieves near-perfect recall on long-context retrieval tasks across modalities, improves the state-of-the-art in long-document QA, long-video QA and long-context ASR, and matches or surpasses Gemini 1.0 Ultra’s state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5 Pro’s long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 2.1 (200k) and GPT-4 Turbo (128k). Finally, we highlight surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person learning from the same content.

Friday, February 16, 2024

An agent-based vision for scaling modern AI - Why current efforts are misguided.

I pass on my edited clips from Venkatesh Rao’s most recent newsletter - substantially shortening its length and inserting a few definitions of techo-nerd-speak acronyms he uses in brackets [  ].  He suggests interesting analogies between the future evolution of Ai and the evolutionary course taken by biological organisms:

…specific understandings of embodiment, boundary intelligence, temporality, and personhood, and their engineering implications, taken together, point to an agent-based vision of how to scale AI that I’ve started calling Massed Muddler Intelligence or MMI, that doesn’t look much like anything I’ve heard discussed.


…right now there’s only one option: monolithic scaling. Larger and larger models trained on larger and larger piles of compute and data…monolithic scaling is doomed. It is headed towards technical failure at a certain scale we are fast approaching


What sort of AI, in an engineering sense, should we attempt to build, in the same sense as one might ask, how should we attempt to build 2,500 foot skyscrapers? With brick and mortar or reinforced concrete? The answer is clearly reinforced concrete. Brick and mortar construction simply does not scale to those heights


…If we build AI datacenters that are 10x or 100x the scale of todays and train GPT-style models on them …problems of data movement and memory management at scale that are already cripplingly hard will become insurmountable…current monolithic approaches to scaling AI are the equivalent of brick-and-mortar construction and fundamentally doomed…We need the equivalent of a reinforced concrete beam for AI…A distributed agent-based vision of modern AI is the scaling solution we need.

Scaling Precedents from Biology

There’s a precedent here in biology. Biological intelligence scales better with more agent-like organisms. For example: humans build organizations that are smarter than any individual, if you measure by complexity of outcomes, and also smarter than the scaling achieved by less agentic eusocial organisms…ants, bees, and sheep cannot build complex planet-scale civilizations. It takes much more sophisticated agent-like units to do that.

Agents are AIs that can make up independent intentions and pursue them in the real world, in real time, in a society of similarly capable agents (ie in a condition of mutualism), without being prompted. They don’t sit around outside of time, reacting to “prompts” with oracular authority…as in sociobiology, sustainably scalable AI agents will necessarily have the ability to govern and influence other agents (human or AI) in turn, through the same symmetric mechanisms that are used to govern and influence them…If you want to scale AI sustainably, governance and influence cannot be one way street from some privileged agents (humans) to other less privileged agents (AIs)….

If you want complexity and scaling, you cannot govern and influence a sophisticated agent without opening yourself up to being governed and influenced back. The reasoning here is similar to why liberal democracies generally scale human intelligence far better than autocracies. The MMI vision I’m going to outline could be considered “liberal democracy for mixed human-AI agent systems.” Rather than the autocratic idea of “alignment” associated with “AGI,” MMIs will call for something like the emergent mutualist harmony that characterizes functional liberal democracies. You don’t need an “alignment” theory. You need social contract theory.

The Road to Muddledom

Agents, and the distributed multiagent systems (MAS) that represent the corresponding scaling model, obviously aren’t a new idea in AI…MAS were often built as light architectural extensions of early object-oriented non-AI systems… none of this machinery works or is even particularly relevant for the problem of scaling modern AI, where the core source of computational intelligence is a large-X-model with fundamentally inscrutable input-output behavior. This is a new, oozy kind of intelligence we are building with for the first time. ..We’re in new regimes, dealing with fundamentally new building materials and aiming for new scales (orders of magnitude larger than anything imagined in the 1990s).

Muddling Doctrines

How do you build muddler agents? I don’t have a blueprint obviously, but here are four loose architectural doctrines, based on the four heterodoxies I noted at the start of this essay (see links there): embodiment, boundary intelligence, temporality, and personhood.

Embodiment matters: The physical form factor AI takes is highly relevant to to its nature, behavior, and scaling potential.

Boundary intelligence matters. Past a threshold, intelligence is a function of the management of boundaries across which data flows, not the sophistication of the interiors where it is processed.

Temporality matters: The kind of time experienced by an AI matters for how it can scale sustainably.

Personhood matters: The attributes of an AI that enable humans and AIs to relate to each other as persons (I-you), rather than things (I-it), are necessary elements to being able to construct coherent scalably composable agents at all.


The first three principles require that AI computation involve real atoms, live in real time, and deal with the second law of thermodynamics

The fourth heterodoxy turns personhood …into a load-bearing architectural element in getting to scaled AI via muddler agents. You cannot have scaled AI without agency, and you cannot have a scalable sort of agency without personhood.

As we go up the scale of biological complexity, we get much programmable and flexible forms of communication and coordination. … we can start to distinguish individuals by their stable “personalities” (informationally, the identifiable signature of personhood). We go from army ants marching in death spirals to murmurations of starlings to formations of geese to wolf packs maneuvering tactically in pincer movements… to humans whose most sophisticated coordination patterns are so complex merely deciphering them stresses our intelligence to the limit.

Biology doesn’t scale to larger animals by making very large unicellular creatures. Instead it shifts to a multi-cellular strategy. Then it goes further: from simple reproduction of “mass produced” cells to specialized cells forming differentiated structures (tissues) via ontogeny (and later, in some mammals, through neoteny). Agents that scale well have to be complex and variegated agents internally, to achieve highly expressive and varied behaviors externally. But they must also present simplified facades — personas — to each other to enable the scaling and coordination.

Setting aside questions of philosophy (identity, consciousness),  personhood is a scaling strategy. Personhood is the behavioral equivalent of a cell. “Persons” are stable behavioral units that can compose in “multicellular” ways because they communicate differently than simpler agents with weak or non-existent personal boundaries, and low-agency organisms like plants and insects.

When we form and perform “personas,” we offer a harder interface around our squishy interior psyches that composes well with the interfaces of other persons for scaling purposes. A personhood performance is something like a composability API [application programmers interface] for intelligence scaling.

Beyond Training Determinism

…Right now AIs experience most of their “time” during training, and then effectively enter a kind of stasis. …They requiring versioned “updates” to get caught up again…GPT4 can’t simply grow or evolve its way to GPT5 by living life and learning from it. It needs to go through the human-assisted birth/death (or regeneration perhaps) singularity of a whole new training effort. And it’s not obvious how to automate this bottleneck in either a Darwinian or Lamarckian way.

…For all their power, modern AIs are still not able to live in real time and keep up with reality without human assistance outside of extremely controlled and stable environments…As far as temporality is concerned, we are in a “training determinism” regime that is very un-agentic and corresponds to genetic determinism in biology.What makes agents agents is that they live in real time, in a feedback loop with external reality unfolding at its actual pace of evolution.

Muddling Through vs. Godding Through

Lindblom’s paper identifies two patterns of agentic behavior, “root” (or rational-comprehensive) and “branch” (or successive limited comparisons), and argues that in complicated messy circumstances requiring coordinated action at scale, the way actually effective humans operate is the branch method, which looks like “muddling through” but gradually gets there, where the root method fails entirely. Complex here is things humans typically do in larger groups, like designing and implementing complex governance policies or undertaking complex engineering projects. The threshold for “complex” is roughly where explicit coordination protocols become necessary scaffolding. This often coincides with the threshold where reality gets too big to hold in one human head.

The root method attempts to fight limitations with brute, monolithic force. It aims to absorb all the relevant information regarding the circumstances a priori (analogous to training determinism), and discover the globally optimal solution through “rational” and “comprehensive” thinking. If the branch method is “muddling through,” we might say that the root, or rational-comprehensive approach, is an attempt to “god through.”…Lindblom’s thesis is basically that muddling through eats godding through for lunch.

To put it much more bluntly: Godding through doesn’t work at all beyond small scales and it’s not because the brains are too small. Reasoning backwards from complex goals in the context of an existing complex system evolving in real time doesn’t work. You have to discover forwards (not reason forwards) by muddling.

..in thinking about humans, it is obvious that Lindblom was right…Even where godding through apparently prevails through brute force up to some scale, the costs are very high, and often those who pay the costs don’t survive to complain…Fear of Big Blundering Gods is the essential worry of traditional AI safety theology, but as I’ve been arguing since 2012 (see Hacking the Non-Disposable Planet), this is not an issue because these BBGs will collapse under their own weight long before they get big enough for such collapses to be exceptionally, existentially dangerous.

This worry is similar to the worry that a 2,500 foot brick-and-mortar building might collapse and kill everybody in the city…It’s not a problem because you can’t build a brick-and-mortar building to that height. You need reinforced concrete. And that gets you into entirely different sorts of safety concerns.

Protocols for Massed Muddling

How do you go from individual agents (AI or human) muddling through to masses of them muddling through together? What are the protocols of massed muddling? These are also the protocols of AI scaling towards MMIs (Massed Muddler Intelligences)

When you put a lot of them together using a mix of hard coordination protocols (including virtual-economic ones) and softer cultural protocols, you get a massed muddler intelligence, or MMI. Market economies and liberal democracies are loose, low-bandwidth examples of MMIs that use humans and mostly non-AI computers to scale muddler intelligence. The challenge now is to build far denser, higher bandwidth ones using modern AI agents.

I suspect at the scales we are talking about, we will have something that looks more like a market economy than like the internal command-economy structure of the human body. Both feature a lot of hierarchical structure and differentiation, but the former is much less planned, and more a result of emergent patterns of agglomeration around environmental circumstances (think how the large metros that anchor the global economy form around the natural geography of the planet, rather than how major organ systems of the human body are put together).

While I suspect MMIs will partly emerge via choreographed ontogenic roadmaps from a clump of “stem cells” (is that perhaps what LxMs [large language models] are??), the way market economies emerge from nationalist industrial policies, overall the emergent intelligences will be masses of muddling rather than coherent artificial leviathans. Scaling “plans” will help launch, but not determine the nature of MMIs or their internal operating protocols at scale. Just like tax breaks and tariffs might help launch a market economy but not determine the sophistication of the economy that emerges or the transactional patterns that coordinate it. This also answers the regulation question: Regulating modern AI MMIs will look like economic regulation, not technology regulation.

How the agentic nature of the individual muddler agent building block is preserved and protected is the critical piece of the puzzle, just as individual economic rights (such as property rights, contracting regimes) are the critical piece in the design of “free” markets.

Muddling produces a shell of behavioral uncertainty around what a muddler agent will do, and how it will react to new information, that creates an outward pressure on the compressive forces created by the dense aggregation required for scaling. This is something like the electron degeneracy pressure that resists the collapse of stars under their own gravity. Or how the individualist streak in even the most dedicated communist human resists the collapse of even the most powerful cults into pure hive minds. Or how exit/voice dynamics resist the compression forces of unaccountable organizational management.

…the fundamental intentional tendency of individual agents, on which all other tendencies, autonomous or not, socially influencable or not, rest…[is]  body envelope integrity.

…This is a familiar concern for biological organisms. Defending against your body being violently penetrated is probably the foundation of our entire personality. It’s the foundation of our personal safety priorities — don’t get stabbed, shot, bitten, clawed or raped. All politics and economics is an extension of envelope integrity preservation instincts. For example, strictures against theft (especially identity theft) are about protecting the body envelope integrity of your economic body. Habeas corpus is the bedrock of modern political systems for a reason. Your physical body is your political body…if you don’t have body envelope integrity you have nothing.

This is easiest to appreciate in one very visceral and vivid form of MMIs: distributed robot systems. Robots, like biological organisms, have an actual physical body envelope (though unlike biological organisms they can have high-bandwidth near-field telepathy). They must preserve the integrity of that envelope as a first order of business … But robot MMIs are not the only possible form factor. We can think of purely software agents that live in an AI datacenter, and maintain boundaries and personhood envelopes that are primarily informational rather than physical. The same fundamental drive applies. The integrity of the (virtual) body envelope is the first concern.

This is why embodiment is an axiomatic concern. The nature of the integrity problem depends on the nature of the embodiment. A robot can run away from danger. A software muddler agent in a shared memory space within a large datacenter must rely on memory protection, encryption, and other non-spatial affordances of computing environments.

Personhood is the emergent result of successfully solving the body-envelope-integrity problem over time, allowing an agent to present a coherent and hard mask model to other agents even in unpredictable environments. This is not about putting a smiley-faced RLHF [Reinforcement Learning from Human Feedback]. mask on a shoggoth interior to superficially “align” it. This is about offering a predictable API for other agents to reliably interface with, so scaled structures in time and social space don’t collapse.  [They have] hardness - the property or quality that allows agents with soft and squishy interiors to offer hard and unyielding interfaces to other agents, allowing for coordination at scale.

…We can go back to the analogy to reinforced concrete. MMIs are fundamentally built out of composite materials that combine the constituent simple materials in very deliberate ways to achieve particular properties. Reinforced concrete achieves this by combining rebar and cement in particular geometries. The result is a flexible language of differentiated forms (not just cuboidal beams) with a defined grammar.

MMIs will achieve this by combining embodiment, boundary management, temporality, and personhood elements in very deliberate ways, to create a similar language of differentiated forms that interact with a defined grammar.

And then we can have a whole new culture war about whether that’s a good thing.

Sunday, January 21, 2024

Titles and URLs for key MindBlog posts on selves

I pass on a chronological list of titles and URLs of MindBlog posts assembled in preparation for a video chat with a European MindBlog reader:

An "Apostle's Creed" for the humanistic scientific materialist?
https://mindblog.dericbownds.net/2006/03/apostles-creed-for-humanistic.html

Some rambling on "Selves" and “Purpose”
https://mindblog.dericbownds.net/2007/10/some-rambling-on-selves-and-purpose.html

Self, purpose, and tribal mentality as Darwinian adaptations (or…Why why aren’t we all enlightened?)
https://mindblog.dericbownds.net/2020/05/self-purpose-and-tribal-mentality-as.html

MindBlog passes on a note: on the relief of not being yourself
https://mindblog.dericbownds.net/2020/03/mindblog-passes-on-note-on-relief-of.html

Points on having a self and free will.
https://mindblog.dericbownds.net/2021/03/points-on-having-self-and-free-will.html

I am not my problem
https://mindblog.dericbownds.net/2022/06/i-am-not-my-problem.html

The non-duality industry as a panacea for the anxieties of our times?         https://mindblog.dericbownds.net/2022/11/the-non-duality-industry-as-panacea-for.html

Enlightenment, Habituation, and Renewal - Or, Mindfulness as the opiate of the thinking classes?
https://mindblog.dericbownds.net/2023/01/enlightenment-habituation-and-renewal.html

A quick MindBlog riff on what a self is….
https://mindblog.dericbownds.net/2023/01/a-quick-mindblog-riff-on-what-self-is.html

MindBlog paragraphs bloviating on the nature of the self ask Google Bard and Chat GPT 4 for help
https://mindblog.dericbownds.net/2023/05/mindblog-paragraphs-bloviating-on.html

A MindBlog paragraph on non-dual awareness massaged by Bard and ChatGPT-4
https://mindblog.dericbownds.net/2023/07/a-mindblog-paragraph-on-non-dual.html

Constructing Self and World
https://mindblog.dericbownds.net/2023/09/constructing-self-and-world.html  

Anthropic Claude's version of my writing on the Mind - a condensation of my ideas
https://mindblog.dericbownds.net/2023/10/anthropic-claudes-version-of-my-writing.html  

A Materialist's Credo
https://mindblog.dericbownds.net/2023/10/a-materialists-credo.html

How our genes support our illusory selves - the "Baldwin effect"
https://mindblog.dericbownds.net/2023/11/how-our-genes-support-our-illusory.html











.



















.








 


Monday, December 25, 2023

Large Language Models are not yet providing theories of human language.

 From Dentella et al. (open source):

Significance
The synthetic language generated by recent Large Language Models (LMs) strongly resembles the natural languages of humans. This resemblance has given rise to claims that LMs can serve as the basis of a theory of human language. Given the absence of transparency as to what drives the performance of LMs, the characteristics of their language competence remain vague. Through systematic testing, we demonstrate that LMs perform nearly at chance in some language judgment tasks, while revealing a stark absence of response stability and a bias toward yes-responses. Our results raise the question of how knowledge of language in LMs is engineered to have specific characteristics that are absent from human performance.
Abstract
Humans are universally good in providing stable and accurate judgments about what forms part of their language and what not. Large Language Models (LMs) are claimed to possess human-like language abilities; hence, they are expected to emulate this behavior by providing both stable and accurate answers, when asked whether a string of words complies with or deviates from their next-word predictions. This work tests whether stability and accuracy are showcased by GPT-3/text-davinci-002, GPT-3/text-davinci-003, and ChatGPT, using a series of judgment tasks that tap on 8 linguistic phenomena: plural attraction, anaphora, center embedding, comparatives, intrusive resumption, negative polarity items, order of adjectives, and order of adverbs. For every phenomenon, 10 sentences (5 grammatical and 5 ungrammatical) are tested, each randomly repeated 10 times, totaling 800 elicited judgments per LM (total n = 2,400). Our results reveal variable above-chance accuracy in the grammatical condition, below-chance accuracy in the ungrammatical condition, a significant instability of answers across phenomena, and a yes-response bias for all the tested LMs. Furthermore, we found no evidence that repetition aids the Models to converge on a processing strategy that culminates in stable answers, either accurate or inaccurate. We demonstrate that the LMs’ performance in identifying (un)grammatical word patterns is in stark contrast to what is observed in humans (n = 80, tested on the same tasks) and argue that adopting LMs as theories of human language is not motivated at their current stage of development.

Wednesday, December 20, 2023

In Search of Hardness - Protocol studies, the next crypto cycle, and the next age of the world

I’m using this posting to save for myself some clips of text from Venkatesh Rao’s most recent piece, to continue mulling over where I place it on the trivial versus sublime spectrum (some of his jargon you will only understand if you have followed the previous installments on Rao I've put in MindBlog...note the link at the end to The Summer of Protocols)… Here are the clips:
Protocols are engineered hardness, and in that, they’re similar to other hard, enduring things, ranging from diamonds and monuments to high-inertia institutions and constitutions.
But modern protocols are more than that. They’re not just engineered hardness, they are programmable, intangible hardness. They are dynamic and evolvable. And we hope they are systematically ossifiable for durability. They are the built environment of digital modernity.
So what is hardness? Hardness is to protocols as information is to computing, or intelligence to AI. I’ll quote Josh Stark’s original take (specific to blockchains, but applicable to all kinds of protocols) here:
Although humans have been creating and using information technologies like writing, printing, and telegrams for hundreds or thousands of years, it was only in the last century that we articulated clearly what all of these things have in common, and realized that they can be understood as a category.
In the decades since, the idea of information has spread into mass culture. Today, it is intuitive to most people that speech, images, films, writing, DNA, and software are all just different kinds of information.
I believe that a similar situation exists today with respect to blockchains. A new technology has forced us to reconsider things we thought we understood. But instead of books, telephones, and voices, this time it is money, law, and government. We can sense the outline of a category that unites these seemingly disparate things.
Perhaps there is an analog to information hidden in the foundations of our civilization. An abstract property that once revealed, might help remake our understanding of the world, and help us answer plainly what problem blockchains are supposed to solve.
Call this property hardness.
Human civilization depends in part on our ability to make the future more certain in specific ways.
Fixed, hard points across time that let us make the world more predictable.
We need these hard points because it is impossible to coordinate at scale without them. Money doesn’t work unless there is a degree of certainty it will still be valuable in the future. Trade is very risky if there isn’t confidence that parties will follow their commitments.
The bonds of social and family ties can only reach so far through space and time, and so we have found other means of creating certainty and stability in relationships stretching far across the social graph. Throughout history we have found ways to make the future more certain, creating constants that are stable enough to rely upon.
It’s all hardness engineering, and the solution is always protocols that put the right amounts of hardness in the right places at the right times. And it’s almost always enlightening and useful to explicitly think of problems that way. … My favorite protocol in recent weeks has been the one implemented in ATMs that forces you to take your card back before dispensing cash. A simple re-ordering of actions to create a spot of hardness where there was previously an annoying softness (remembering to take your card).
I’ve been nursing this thought that AI and crypto are like the First and Second Foundations of our technological future, together building a pathway out of the desolation of the collapsing industrial age. I just came up with another metaphor for the relationship that I like: AI cuts, crypto chooses. It’s the balance-of-power protocol that will govern the planet in the coming decades.
In practically any domain, I find, thinking in terms of protocols and explicitly searching for hardness to work with is an immensely generative thing to do. It helps get immediate problems unstuck, and it helps you see creative and expansive options.
The world of protocols is a strangely hidden one. Even though there are hundreds of millions of people around the world who explicitly organize their work and thinking around protocols of various sorts, the language of protocols is not a familiar one. It is easier to look through protocols than at them. It is easier to act through protocols than on them.
The language of protocols is an esoteric one for navigating a hidden (and at the risk of sounding cliched, liminal) world that prefers to stay hidden, in part because it deals in the civilizational techno-unconscious. The invisibility of protocols is a core feature. There’s a reason A. N. Whitehead’s famous line, “Civilization advances by extending the number of important operations which we can perform without thinking of them” became the de facto motto of the Summer of Protocols. Thinking about protocols, you get a sense of a landscape of invisible, inviolable hardness all around us, that shapes our behaviors without our being quite aware of it. A landscape you can learn to see, shape, and violate if you learn the language.

Wednesday, December 13, 2023

AI is a camera, not an engine.

Yet another brilliant essay from Venkatest Rao on how modern AI puts us into an age of exploration of computational reality. I got halfway through my usual gig of extracting clips from the article to archive the main points in a post for later look up by myself or others. Halfway through this chore, I realized the material was so deep and dense that my clips were containing more than half of the original text. So, I have halted the editing down and suggest that readers have a go at the entire original article. I also presented the entire text to ChatGPT-4, preceded by the following prompt:
Intelligence as a Measure of Data. Could you condense, rephrase, extract the main messages of the following text to be more comprehensible to college educated non-specialists? Here is the text:

Here is ChatGPT-4's take on the article, which is a vastly better job than I could have done without spending many more hours on the material: 

The text you've provided is a deep and philosophical exploration of modern artificial intelligence (AI), contrasting it with earlier forms of AI and other technological advancements. Here's a more accessible summary:

  1. Modern AI as a Discovery, Not an Invention: Unlike earlier AI (termed "Good Old-Fashioned AI"), modern AI is viewed not as a machine or an invention, but as a significant discovery. This new era of AI is compared to the James Webb Space Telescope, an instrument of exploration rather than a tool of production. Modern AI is seen as a way to delve deeply into vast amounts of data.

  2. AI as a Data Camera: The author suggests thinking of AI as a "data camera" that reveals hidden layers and insights within large datasets, much like telescopes reveal distant galaxies. This analogy emphasizes AI's role in uncovering hidden patterns and information in data, rather than creating it.

  3. The Nature of Intelligence in AI: The text challenges traditional views of intelligence, suggesting that what we consider intelligent behavior may arise from simple processes and large datasets. It proposes that AI is enabling us to understand the nature of intelligence itself, which is more about data interaction than complex processing.

  4. AI's Role in Understanding Computational Reality: Modern AI fits within a series of discoveries about computational reality, which lies between objective (physical) and subjective (mental) realities. This journey of discovery includes various fields like information theory, computability theory, and now, AI.

  5. The Broad Impact of AI: The author explores the potential of AI to transform our understanding of various domains, from language to natural phenomena. This includes using AI to interpret complex datasets in novel ways, such as understanding ocean currents or predicting solar flares.

  6. Reconceptualizing Intelligence: The idea is proposed that intelligence might be a property of data processed in certain ways, rather than an attribute of the processing technology itself. This view opens up new ways of understanding and measuring intelligence based on data characteristics.

  7. AI and the Universe's Memory: The author posits that AI reveals a natural, universal memory phenomenon inherent in all matter, suggesting a deep connection between information, space, time, and matter. This perspective considers AI as a tool that uncovers the universe's way of remembering and expressing itself.

  8. The Human Perspective: Finally, the text touches on the human aspect in this technological evolution, pondering how our understanding of ourselves and our place in the universe might change in the face of these AI-driven discoveries.

This summary simplifies the original text's complex ideas, focusing on the main themes of AI as a tool of discovery, the redefinition of intelligence, and the broader implications for understanding reality and our place within it.

 

Thursday, December 07, 2023

Goggle's Bard and Chat GPT-4 on using AI to explore beyond language and words...

I show first the prompt I addressed yesterday afternoon to both Bard and ChatGPT-4.  The more nuanced response I received from Bard makes me wonder if Google has already started to use the new Gemini AI algorithms  announced yesterday to power Bard.  Here is the prompt, followed by the Bard and ChatGPT-4 responses:

Exploring beyond language and words - starting a conversation: Let us suppose that increasingly sophisticated LLMs, generative pretrained transformers, will become superior to humans in performing any linguistic chores requiring use and knowledge of all the world's written literature that was used as the training opus. This might free humans to pay more attention to understanding non-linguistic aspects of their experiences (such as non verbal music, art, prosody, body language, social mirroring, etc). Could you suggest ways in which AI could assist in defining and elucidating the non-linguistic aspects of our lives so that we might devote more of our attention to them rather than to linguistic chores ?

 
Google's Bard's response:
 
How AI could help us explore beyond language and words:

Your suggestion about increasingly sophisticated LLMs taking over linguistic tasks opens up a fascinating possibility: freeing humans to focus on non-linguistic aspects of experience. Here are some ways AI could assist us in this exploration:

1. Data analysis and pattern recognition:

  • Large-scale analysis of nonverbal communication: AI could analyze vast datasets of audio, video, and sensor data to identify patterns and relationships between nonverbal cues like facial expressions, gestures, posture, and vocal intonation. This could deepen our understanding of non-verbal communication in various contexts, from interpersonal communication to artistic expression.
  • Mapping emotions and mental states: AI could analyze physiological data like heart rate, skin conductance, and brain activity to identify correlations with emotions and mental states. This could lead to the development of tools that help us better understand our own and others' emotions, fostering empathy and improving communication.
  • Identifying patterns in non-verbal art forms: AI could analyze large collections of music, paintings, sculptures, and other non-verbal art forms to identify recurring patterns, styles, and themes. This could help us discover new insights into human creativity and unlock hidden meanings in art.

2. AI as a creative collaborator:

  • Generating novel forms of non-verbal communication: AI could be used to generate new forms of non-verbal communication, such as synthesized musical pieces, abstract visual art, or even gestures and facial expressions. This could lead to new artistic expressions and enhance communication beyond words.
  • Personalized non-verbal experiences: AI could personalize non-verbal experiences based on individual preferences and emotional states. For example, AI could curate music playlists or generate visual art that resonates with a user's mood. This could deepen our emotional engagement with non-verbal art forms and enhance our well-being.
  • Interactive storytelling and learning: AI could create interactive non-verbal narratives that adapt to user choices and emotions. This could provide engaging and personalized learning experiences in various fields, from language learning to cultural immersion.

3. AI as a facilitator for human interaction:

  • Real-time translation and interpretation of non-verbal cues: AI could be used to translate nonverbal cues in real-time, facilitating communication across cultures and bridging the gap between people with different communication styles.
  • Augmenting sensory experiences: AI could be used to create immersive virtual environments that stimulate various senses, allowing us to explore and interact with the world in new ways. This could broaden our understanding of non-verbal communication and deepen our appreciation for sensory experiences.
  • Promoting mindfulness and self-awareness: AI could be used to develop tools that help us become more aware of our own non-verbal communication and emotions. This could enhance our self-awareness and improve our ability to manage our emotions and relationships.

4. Ethical considerations:

While AI holds immense potential for assisting us in exploring the non-linguistic aspects of our lives, ethical considerations must be addressed. These include:

  • Bias and fairness: AI models are susceptible to biases present in the data they are trained on. It is crucial to ensure that AI tools used to analyze and interpret non-verbal communication are unbiased and fair.
  • Data privacy and security: The use of AI necessitates the collection and analysis of personal data. It is essential to ensure data privacy and security, safeguarding individuals' information from unauthorized access or misuse.
  • Human autonomy and control: AI should be used to enhance human understanding and experience, not replace it. We must ensure that AI remains a tool that empowers humans to explore and appreciate the non-linguistic aspects of life, not a force that dictates our thoughts and emotions.

By leveraging the power of AI responsibly and ethically, we can embark on a journey of deeper understanding and engagement with the non-linguistic aspects of our existence. This journey holds the potential to enrich our lives, strengthen our relationships, and unlock new forms of creativity and expression.

*********

ChatGPT-4's response:

The idea of AI assisting in understanding and elucidating non-linguistic aspects of human experience is intriguing and holds much potential. Here are several ways in which AI could be instrumental in this area:

  1. Enhanced Emotional Recognition and Analysis: AI can be trained to recognize and interpret human emotions through facial expressions, voice modulation, and body language. This would be particularly useful in enhancing interpersonal communication and understanding, especially in situations where verbal communication is limited or not possible.

  2. Music and Art Analysis: AI can analyze patterns, styles, and historical influences in music and art. By doing so, it can provide insights into the emotional and cultural contexts of various artworks or musical pieces, deepening our appreciation and understanding of these forms.

  3. Virtual Reality and Augmented Reality Experiences: AI can be used to create immersive VR and AR experiences that enable individuals to explore non-linguistic aspects of human culture and history, such as virtual tours of art galleries, historical sites, or even recreations of historical events.

  4. Non-Verbal Communication Training: AI can assist in teaching and improving non-verbal communication skills, such as understanding body language, gestures, and facial expressions, which are crucial for effective interpersonal interactions.

  5. Social Mirroring and Behavioral Analysis: AI can analyze social interactions and provide feedback or insights into social dynamics. This could be useful in understanding group behaviors, cultural norms, and even in improving social skills.

  6. Sensory Enhancement Technologies: AI-driven technologies could enhance or augment human senses, allowing for a deeper engagement with the non-linguistic elements of the world, such as experiencing a wider range of sounds or visual details.

  7. Emotional and Psychological Support: AI can offer personalized support and interventions based on non-linguistic cues, aiding in mental health and emotional well-being.

  8. Enhancing Creative Processes: AI can assist artists, musicians, and creators by suggesting non-linguistic elements that might enhance their work, based on analysis of vast amounts of artistic and musical data.

  9. Personalized Learning and Development: AI can tailor learning experiences to individual preferences and learning styles, focusing on non-linguistic methods like interactive simulations, visual aids, and hands-on activities.

  10. Cross-Cultural Understanding and Communication: AI can help bridge cultural gaps by providing insights into non-verbal cues and norms that are specific to different cultures, aiding in cross-cultural understanding and communication.

In all these ways, AI has the potential to significantly enrich human understanding and appreciation of the non-linguistic aspects of our lives, allowing us to engage more deeply with the world beyond words.

 



Sunday, December 03, 2023

A flash of clarity on what current LLMs can and can not do. An AI apocalypse does not appear to be eminent...

In his most recent newsletter, Venkatesh Rao pulls up a twitter thread he wrote in 2017 making what he calls an ontological distinction between  boundary intelligence and interior intelligence.  This was before transformers like GPT-1 began to attract more attention. The distinction Rao makes is central to understanding what current large language models (LLMs) can and can not do. Here is his unedited text from 2017:
 
1. I'd like to make up a theory of intelligence based on a 2-element ontology: boundary and interior intelligence

2. Boundary intelligence is how you deal with information flows across the boundary of your processing abilities 

3. Interior intelligence is how you process information. Includes logic, emotional self-regulation, etc.

4. A thesis I've been converging on is that boundary intelligence is VASTLY more consequential once interior intelligence exceeds a minimum

5. Boundary intelligence is by definition meta, since you're tuning your filters and making choices about what to even let hit your attention

6. I think it is highly consequential because almost all risk management happens via boundary intelligence (blindspots, black swans etc)

7. Interior intelligence is your poker skill and strategy. Boundary intelligence is picking which table to sit down at

8. Interior intelligence is reading a book competently, extracting insights and arguments. Boundary intelligence is picking books to read. 

9. Interior intelligence is being a good listener. Boundary intelligence is deciding whom to listen to. 

10. Basically, better input plus mediocre IQ beats bad input and genius IQ every time, so boundary intelligence is leverage

11. And obviously, boundary intelligence is more sensitive to context. The noisier and angrier info streams get, the more BI beats II

12. Most of boundary intelligence has to do with input intelligence, but output intelligence becomes more important with higher agency 

13. Output intelligence is basically the metacognition around when/where/how/to-whom/why to say or do things you are capable of saying/doing

14. We think a lot about external factors in decisions, but output intelligence is about freedom left after you've dealt with external part

Next, from the abstract of a forthcoming paper by Yadlowsky et al. Rao extracts the following:

…when presented with tasks or functions which are out-of-domain of their pretraining data, we demonstrate various failure modes of transformers and degradation of their generalization for even simple extrapolation tasks. Together our results highlight that the impressive ICL abilities of high-capacity sequence models may be more closely tied to the coverage of their pretraining data mixtures than inductive biases that create fundamental generalization capabilities.

And then, in the following selected clips, continues his text:

Translated into the idiom from the fourteen points above, this translates into “It’s all interior intelligence, just within a very large boundary.” There is no boundary intelligence in current machine learning paradigms. There isn’t even an awareness of boundaries; just the ability to spout statements about doubt, unknowns, and boundaries of knowability; a bit like a blind person discussing color in the abstract.

This is not to say AI cannot acquire BI. In fact, it can do so in a very trivial way, through embodiment. Just add robots around current AIs and let them loose in real environments.

The reason people resist this conclusion is is irrational attachment to interior intelligence as a sacred cow (and among computer science supremacists, a reluctance to acknowledge the relevance and power of embodiment and situatedness in understandings of intelligence). If much of the effectual power of intelligence is attributable to boundary intelligence, there is much less room for sexy theories of interior intelligence. Your (cherished or feared) god-like AI is reduced to learning through FAFO (Fuck around and find out) feedback relationships with the rest of the universe, across its boundary, same as us sadsack meatbag intelligences with our paltry 4-GPU-grade interior intelligence.

In their current (undoubtedly very impressive) incarnation, what we have with AI is 100% II, 0% BI. Human and animal intelligences (and I suspect even plant intelligences, and definitely evolutionary process intelligence) are somewhere between 51-49 to 99.9-0.1% BI. They are dominated to varying degrees by boundary intelligence. Evolutionary processes are 100% BI, 0% II.

Wednesday, November 29, 2023

Meta-Learned Models of Cognition

I pass on the text of a recent email from Behavioral and Brain Sciences inviting commentary on an article by Binz et al.  I am beginning to plow through the interesting text and figures - and will mention that motivated readers can obtain a PDF of the article from me.

Target Article: Meta-Learned Models of Cognition

Authors: Marcel Binz, Ishita Dasgupta, Akshay K. Jagadish, Matthew Botvinick, Jane X. Wang, and Eric Schulz

Deadline for Commentary Proposals: Wednesday, December 20, 2023

Abstract: Psychologists and neuroscientists extensively rely on computational models for studying and analyzing the human mind. Traditionally, such computational models have been hand-designed by expert researchers. Two prominent examples are cognitive architectures and Bayesian models of cognition. While the former requires the specification of a fixed set of computational structures and a definition of how these structures interact with each other, the latter necessitates the commitment to a particular prior and a likelihood function which - in combination with Bayes' rule - determine the model's behavior. In recent years, a new framework has established itself as a promising tool for building models of human cognition: the framework of meta-learning. In contrast to the previously mentioned model classes, meta-learned models acquire their inductive biases from experience, i.e., by repeatedly interacting with an environment. However, a coherent research program around meta-learned models of cognition is still missing to this day. The purpose of this article is to synthesize previous work in this field and establish such a research program. We accomplish this by pointing out that meta-learning can be used to construct Bayes-optimal learning algorithms, allowing us to draw strong connections to the rational analysis of cognition. We then discuss several advantages of the meta-learning framework over traditional methods and reexamine prior work in the context of these new insights.

Keywords: meta-learning, rational analysis, Bayesian inference, cognitive modeling, neural networks

Monday, November 27, 2023

The feasibility of artificial consciousness through the lens of neuroscience

Some interesting perspectives from Aru, Larkum, and Shine in Trends in Neurosciences. Motivated readers can obtain a copy of the article's text from me.  

Highlights

Large language models (LLMs) can produce text that leaves the impression that one may be interacting with a conscious agent.
Present-day LLMs are text-centric, whereas the phenomenological umwelt of living organisms is multifaceted and integrated.
Many theories of the neural basis of consciousness assign a central role to thalamocortical re-entrant processing. Currently, such processes are not implemented in LLMs.
The organizational complexity of living systems has no parallel in present-day AI tools. Possibly, AI systems would have to capture this biological complexity to be considered conscious.
LLMs and the current debates on conscious machines provide an opportunity to re-examine some core ideas of the science of consciousness.
Abstract
Interactions with large language models (LLMs) have led to the suggestion that these models may soon be conscious. From the perspective of neuroscience, this position is difficult to defend. For one, the inputs to LLMs lack the embodied, embedded information content characteristic of our sensory contact with the world around us. Secondly, the architectures of present-day artificial intelligence algorithms are missing key features of the thalamocortical system that have been linked to conscious awareness in mammals. Finally, the evolutionary and developmental trajectories that led to the emergence of living conscious organisms arguably have no parallels in artificial systems as envisioned today. The existence of living organisms depends on their actions and their survival is intricately linked to multi-level cellular, inter-cellular, and organismal processes culminating in agency and consciousness.