Human and mouse subjects tried to anticipate at which of 2 locations a reward would appear. On a randomly scheduled fraction of the trials, it appeared with a short latency at one location; on the complementary fraction, it appeared after a longer latency at the other location. Subjects of both species accurately assessed the exogenous uncertainty (the probability of a short versus a long trial) and the endogenous uncertainty (from the scalar variability in their estimates of an elapsed duration) to compute the optimal target latency for a switch from the short- to the long-latency location. The optimal latency was arrived at so rapidly that there was no reliably discernible improvement over trials. Under these nonverbal conditions, humans and mice accurately assess risks and behave nearly optimally. That this capacity is well-developed in the mouse opens up the possibility of a genetic approach to the neurobiological mechanisms underlying risk assessment.
This blog reports new ideas and work on mind, brain, behavior, psychology, and politics - as well as random curious stuff. (Try the Dynamic Views at top of right column.)
Monday, February 23, 2009
Similar risk assessment in man and mouse.
In an open access article Balci et al. devise a simple and clever timing task which captures the essence of temporal decision making that confronts human and nonhuman animal subjects in everyday life, and show that men are no better than mice in assessing a simple kind of uncertainty. This suggests that mechanisms for near-optimal risk assessment in many everyday contexts evolved long ago. Their abstract:
More evidence that some (much?) of our decision-making is not a pre-frontal cortex conscious process, but a largely unconscious one (one of the themes of my book!). Thanks for the post!
ReplyDelete