When we see numerals or hear number words, our brains appear to automatically map them onto a number line that grows increasingly fuzzy above 3 or 4. A few chunks from Holt's article:
... it is generally agreed that infants come equipped with a rudimentary ability to perceive and represent number. (The same appears to be true for many kinds of animals, including salamanders, pigeons, raccoons, dolphins, parrots, and monkeys.) And if evolution has equipped us with one way of representing number, embodied in the primitive number sense, culture furnishes two more: numerals and number words. These three modes of thinking about number, Dehaene believes, correspond to distinct areas of the brain. The number sense is lodged in the parietal lobe, the part of the brain that relates to space and location; numerals are dealt with by the visual areas; and number words are processed by the language areas.
Dehaene has been able to bring together the experimental and the theoretical sides of his quest, and, on at least one occasion, he has even theorized the existence of a neurological feature whose presence was later confirmed by other researchers. In the early nineteen-nineties, working with Jean-Pierre Changeux, he set out to create a computer model to simulate the way humans and some animals estimate at a glance the number of objects in their environment. In the case of very small numbers, this estimate can be made with almost perfect accuracy, an ability known as “subitizing” (from the Latin word subitus, meaning “sudden”). Some psychologists think that subitizing is merely rapid, unconscious counting, but others, Dehaene included, believe that our minds perceive up to three or four objects all at once, without having to mentally “spotlight” them one by one. Getting the computer model to subitize the way humans and animals did was possible, he found, only if he built in “number neurons” tuned to fire with maximum intensity in response to a specific number of objects. His model had, for example, a special four neuron that got particularly excited when the computer was presented with four objects. The model’s number neurons were pure theory, but almost a decade later two teams of researchers discovered what seemed to be the real item, in the brains of macaque monkeys that had been trained to do number tasks. The number neurons fired precisely the way Dehaene’s model predicted—a vindication of theoretical psychology. “Basically, we can derive the behavioral properties of these neurons from first principles,” he told me. “Psychology has become a little more like physics.”
No comments:
Post a Comment