Wednesday, May 25, 2022

Why is a moving hand less sensitive to touch than a stationary hand?

Fuehrer et al. do a nice piece showing how our brains' predictive processing can alter our sensory experience:  

Significance

Tactile sensations on a moving hand are perceived weaker than when presented on the same but stationary hand. There is an ongoing debate about whether this weaker perception is based on sensorimotor predictions or is due to a blanket reduction in sensitivity. Here, we show greater suppression of sensations matching predicted sensory feedback. This reinforces the idea of precise estimations of future body sensory states suppressing the predicted sensory feedback. Our results shine light on the mechanisms of human sensorimotor control and are relevant for understanding clinical phenomena related to predictive processes.
Abstract
The ability to sample sensory information with our hands is crucial for smooth and efficient interactions with the world. Despite this important role of touch, tactile sensations on a moving hand are perceived weaker than when presented on the same but stationary hand. This phenomenon of tactile suppression has been explained by predictive mechanisms, such as internal forward models, that estimate future sensory states of the body on the basis of the motor command and suppress the associated predicted sensory feedback. The origins of tactile suppression have sparked a lot of debate, with contemporary accounts claiming that suppression is independent of sensorimotor predictions and is instead due to an unspecific mechanism. Here, we target this debate and provide evidence for specific tactile suppression due to precise sensorimotor predictions. Participants stroked with their finger over textured objects that caused predictable vibrotactile feedback signals on that finger. Shortly before touching the texture, we probed tactile suppression by applying external vibrotactile probes on the moving finger that either matched or mismatched the frequency generated by the stroking movement along the texture. We found stronger suppression of the probes that matched the predicted sensory feedback. These results show that tactile suppression is specifically tuned to the predicted sensory states of a movement.

No comments:

Post a Comment