Monday, January 08, 2018

Memories are stored by the extracellular matrix surrounding brain cells.

Fascinating work from Thompson et al., who show that degrading the extracellular matrix structure with local injections into visual cortex area 2L of bacterial enzyme chondroitinase ABC can abolish a remote visual fear memory:

Perineuronal nets (PNNs), a type of extracellular matrix only found in the central nervous system, wraps tightly around the cell soma and proximal dendrites of a subset of neurons. The PNNs are long-lasting structures that restrict plasticity, making them eligible candidates for memory processing. This work demonstrates that PNNs in the lateral secondary visual cortex (V2L) are essential for the recall of a remote visual fear memory. The results suggest a role of extracellular molecules in storage and retrieval of memories.
Throughout life animals learn to recognize cues that signal danger and instantaneously initiate an adequate threat response. Memories of such associations may last a lifetime and far outlast the intracellular molecules currently found to be important for memory processing. The memory engram may be supported by other more stable molecular components, such as the extracellular matrix structure of perineuronal nets (PNNs). Here, we show that recall of remote, but not recent, visual fear memories in rats depend on intact PNNs in the secondary visual cortex (V2L). Supporting our behavioral findings, increased synchronized theta oscillations between V2L and basolateral amygdala, a physiological correlate of successful recall, was absent in rats with degraded PNNs in V2L. Together, our findings suggest a role for PNNs in remote memory processing by stabilizing the neural network of the engram.

No comments:

Post a Comment