Monday, June 22, 2015

A new class of anti-aging drugs that selectively kill senescent cells.

From  Brian Ray in the Editor's Choice section of the June 5 issue of Science, another approach to life-extension drugs (and, to possibly curb your enthusiasm about the desirability of such anti-aging efforts, also have a look at "What Happens When We All Live to 100?" in The Atlantic Magazine). :
As organisms age, they accumulate cells that can no longer proliferate. Such cells— termed “senescent”—persist and appear to promote aging by producing and secreting a variety of proteins. Zhu et al. tested whether drugs that inhibit cellular signaling pathways that make senescent cells resistant to stress and cell death could deplete senescent cells in mice. A combination of two drugs that inhibit such pathways selectively killed senescent cells in vitro, improved heart and vascular function in aging mice, and improved symptoms in a mouse model of accelerated aging. Although pinpointing the relevant targets of these drugs is difficult, the studies indicate that selectively targeting senescent cells with small molecules may be feasible.
The Zhu et al. technical abstract:
The healthspan of mice is enhanced by killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and the burden of age-related chronic diseases. Here, we describe the rationale for identification and validation of a new class of drugs termed senolytics, which selectively kill senescent cells. By transcript analysis, we discovered increased expression of pro-survival networks in senescent cells, consistent with their established resistance to apoptosis. Using siRNA to silence expression of key nodes of this network, including ephrins (EFNB1 or 3), PI3Kδ, p21, BCL-xL, or plasminogen-activated inhibitor-2, killed senescent cells, but not proliferating or quiescent, differentiated cells. Drugs targeting these same factors selectively killed senescent cells. Dasatinib eliminated senescent human fat cell progenitors, while quercetin was more effective against senescent human endothelial cells and mouse BM-MSCs. The combination of dasatinib and quercetin was effective in eliminating senescent MEFs. In vivo, this combination reduced senescent cell burden in chronologically aged, radiation-exposed, and progeroid Ercc1−/Δ mice. In old mice, cardiac function and carotid vascular reactivity were improved 5 days after a single dose. Following irradiation of one limb in mice, a single dose led to improved exercise capacity for at least 7 months following drug treatment. Periodic drug administration extended healthspan in Ercc1−/Δ mice, delaying age-related symptoms and pathology, osteoporosis, and loss of intervertebral disk proteoglycans. These results demonstrate the feasibility of selectively ablating senescent cells and the efficacy of senolytics for alleviating symptoms of frailty and extending healthspan.

No comments:

Post a Comment