Wednesday, December 03, 2008

Measuring the real-time chemistry of reward and aversion

fMRI studies suggest that nucleus accumbens (NAc) activation increases in response to stimuli of different hedonic valence, whereas physiological evidence suggests that NAc neurons show increases in activity for rewarding stimuli and pauses for aversive stimuli. Using cyclic voltammetry, Roitman et al. find that patterns of dopamine release and metabolic activity differentiate between rewarding and aversive stimuli. From their text:
It is controversial whether dopamine release in the NAc exclusively signals aspects of reward or serves a more broad purpose for signaling novelty or salience regardless of hedonic value...To dissociate salience or novelty from hedonic valence, we delivered brief intra-oral infusions of sucrose and quinine solutions to naive behaving rats and measured changes in dopamine concentration and pH in the NAc every 100 ms using fast-scan cyclic voltammetry. The pH measurements provide a measure of metabolic activity and thus an indirect measure of general neuronal activity.Appetitive (0.3 M sucrose) and aversive (0.001 M quinine) stimuli were delivered intra-orally to ensure equal exposure and transduction via the same sensory modality: the taste system. Each animal received both appetitive and aversive stimuli at unpredictable times to ensure comparable novelty and salience but opposing hedonic valence. This design elicited strong and consistent behavioral differences in hedonic expression with no evidence of anticipatory or conditioned responses. Voltammetric recordings permitted real-time detection of dopamine release and NAc activity, elucidating their role in signaling hedonic valence. The work makes clear that dopamine signaling and general activity in the NAc is exquisitely sensitive to both rewarding and aversive taste stimuli.

No comments:

Post a Comment